DC Field | Value | Language |
dc.contributor.author | KAMRAOUI, IBrahim | - |
dc.date.accessioned | 2025-07-17T13:14:13Z | - |
dc.date.available | 2025-07-17T13:14:13Z | - |
dc.date.issued | 2025 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/776 | - |
dc.description | Encadrante: Mme Baba-Ahmed Manel Co-Encadrant: Mr MAHAMMED Nadir | en_US |
dc.description.abstract | In the context of intelligent transportation systems, smart vehicular networks have become
indispensable for facilitating advanced communication and improving safety between vehicles
and infrastructure. However, the expansion of connectivity within these networks has
simultaneously broadened the attack surface for cyber threats, raising significant concerns
for public safety and data privacy.
To counter these challenges, researchers have increasingly turned to sophisticated
computational approaches. Among these, the integration of Artificial Intelligence
(AI)—including machine learning and deep learning—with metaheuristic optimization has
shown considerable promise in enhancing the robustness and efficiency of cyber threat detection
systems.
This thesis provides a comprehensive survey of contemporary research and technological
advancements in the protection of smart vehicular networks. It systematically
reviews a spectrum of strategies for threat detection and mitigation, emphasizing the
synergistic potential of combining intelligent algorithms with optimization techniques.
The discussion aims to highlight the evolving landscape of security solutions in smart
vehicular ecosystems and to underscore the ongoing need for innovation in this critical field. ***
Dans le contexte des syst`emes de transport intelligents, les r´eseaux v´ehiculaires intelligents
sont devenus indispensables pour faciliter la communication avanc´ee et am´eliorer la s´ecurit´e
entre les v´ehicules et l’infrastructure. Cependant, l’expansion de la connectivit´e au sein de
ces r´eseaux a simultan´ement ´elargi la surface d’attaque pour les cybermenaces, soulevant
des pr´eoccupations importantes pour la s´ecurit´e publique et la confidentialit´e des donn´ees.
Pour contrer ces d´efis, les chercheurs se sont de plus en plus tourn´es vers des approches
computationnelles sophistiqu´ees. Parmi celles-ci, l’int´egration de l’Intelligence
Artificielle (IA)—incluant l’apprentissage automatique et l’apprentissage profond—avec
l’optimisation m´etaheuristique a montr´e un potentiel consid´erable pour am´eliorer la robustesse
et l’efficacit´e des syst`emes de d´etection de cybermenaces.
Cette th`ese fournit une ´etude exhaustive de la recherche contemporaine et des
avanc´ees technologiques dans la protection des r´eseaux v´ehiculaires intelligents. Elle
examine syst´ematiquement un spectre de strat´egies pour la d´etection et l’att´enuation des
menaces, mettant l’accent sur le potentiel synergique de la combinaison d’algorithmes
intelligents avec des techniques d’optimisation. La discussion vise `a mettre en ´evidence le
paysage ´evolutif des solutions de s´ecurit´e dans les ´ecosyst`emes v´ehiculaires intelligents et
`a souligner le besoin continu d’innovation dans ce domaine critique. | en_US |
dc.language.iso | en | en_US |
dc.subject | Smart Vehicular Networks | en_US |
dc.subject | Cyber Threat Mitigation | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Metaheuristic Optimization | en_US |
dc.title | State of the Art in using AI for Cyber Threat Mitigation in Smart Vehicular Networks | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Master
|