Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/776
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKAMRAOUI, IBrahim-
dc.date.accessioned2025-07-17T13:14:13Z-
dc.date.available2025-07-17T13:14:13Z-
dc.date.issued2025-
dc.identifier.urihttps://repository.esi-sba.dz/jspui/handle/123456789/776-
dc.descriptionEncadrante: Mme Baba-Ahmed Manel Co-Encadrant: Mr MAHAMMED Nadiren_US
dc.description.abstractIn the context of intelligent transportation systems, smart vehicular networks have become indispensable for facilitating advanced communication and improving safety between vehicles and infrastructure. However, the expansion of connectivity within these networks has simultaneously broadened the attack surface for cyber threats, raising significant concerns for public safety and data privacy. To counter these challenges, researchers have increasingly turned to sophisticated computational approaches. Among these, the integration of Artificial Intelligence (AI)—including machine learning and deep learning—with metaheuristic optimization has shown considerable promise in enhancing the robustness and efficiency of cyber threat detection systems. This thesis provides a comprehensive survey of contemporary research and technological advancements in the protection of smart vehicular networks. It systematically reviews a spectrum of strategies for threat detection and mitigation, emphasizing the synergistic potential of combining intelligent algorithms with optimization techniques. The discussion aims to highlight the evolving landscape of security solutions in smart vehicular ecosystems and to underscore the ongoing need for innovation in this critical field. *** Dans le contexte des syst`emes de transport intelligents, les r´eseaux v´ehiculaires intelligents sont devenus indispensables pour faciliter la communication avanc´ee et am´eliorer la s´ecurit´e entre les v´ehicules et l’infrastructure. Cependant, l’expansion de la connectivit´e au sein de ces r´eseaux a simultan´ement ´elargi la surface d’attaque pour les cybermenaces, soulevant des pr´eoccupations importantes pour la s´ecurit´e publique et la confidentialit´e des donn´ees. Pour contrer ces d´efis, les chercheurs se sont de plus en plus tourn´es vers des approches computationnelles sophistiqu´ees. Parmi celles-ci, l’int´egration de l’Intelligence Artificielle (IA)—incluant l’apprentissage automatique et l’apprentissage profond—avec l’optimisation m´etaheuristique a montr´e un potentiel consid´erable pour am´eliorer la robustesse et l’efficacit´e des syst`emes de d´etection de cybermenaces. Cette th`ese fournit une ´etude exhaustive de la recherche contemporaine et des avanc´ees technologiques dans la protection des r´eseaux v´ehiculaires intelligents. Elle examine syst´ematiquement un spectre de strat´egies pour la d´etection et l’att´enuation des menaces, mettant l’accent sur le potentiel synergique de la combinaison d’algorithmes intelligents avec des techniques d’optimisation. La discussion vise `a mettre en ´evidence le paysage ´evolutif des solutions de s´ecurit´e dans les ´ecosyst`emes v´ehiculaires intelligents et `a souligner le besoin continu d’innovation dans ce domaine critique.en_US
dc.language.isoenen_US
dc.subjectSmart Vehicular Networksen_US
dc.subjectCyber Threat Mitigationen_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectMetaheuristic Optimizationen_US
dc.titleState of the Art in using AI for Cyber Threat Mitigation in Smart Vehicular Networksen_US
dc.typeThesisen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
me_moire_Master_2024_2025___Ibrahim-1-1.pdf69,48 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.