الجزائرية الديمقراطية الشعبية الجمهورية République Algérienne Démocratique et Populaire

وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

المدرسة العليا للإعلام الآلي - 08 ماي 1945 – بسيدي بلعباس Ecole Supérieure en Informatique Mai 1945- Sidi Bel Abbes 08-

MEMOIRE

En Vue de l'obtention du diplôme de **Master**

Filière: Informatique

Spécialité : Ingénierie des Systèmes Informatiques (ISI)

Brain Tumor Semantic Segmentation and Classification using Deep Learning techniques

Présenté par :

Mouzaoui Zakaria Mohammed

Soutenu le : **25/06/2023** Devant le jury composé de :

Dr. Fayssal Bendaoud
 Dr. Mohammed Yacine Kazitani
 Dr. Nassima Dif
 Mr. Nadir Mahammed

Président
Encadreur

Examinateur
Co-Encadreur

Année Universitaire: 2022/2023

A CHARLOTTER OF TRAIN
ACKNOWLEDGMENT
$A \cup B \cup A \cup $

First of all, praise and thanks to Allah Almighty for giving me the patience and motivation that allowed me to accomplish this work. I would like to thank my family especially my sister who assisted me in my research by providing the necessary informations when it came to the medical field. Also thanks to my supervisor Dr Mohammed Yassine KAZI TANI for his guidance and useful critiques of this work. Without forgetting to thank all ESI-SBA school family.

Brain cancer, specifically Glioma, is a devastating disease with a very low chance of survival. In fact, only 3.6% of patients diagnosed with high-grade Glioma survive beyond five years. For medical professionals, accurately identifying and categorizing brain tumors into different classes is vital when it comes to diagnosing and planning the appropriate treatment for patients. Magnetic resonance imaging (MRI) is commonly used to examine brain tumors in clinical practice. Fortunately, deep learning methods have shown remarkable potential in effectively segmenting brain tumors and have yielded promising results in various biomedical applications.

This study examines brain tumors semantic segmentation and classification that used deep learning algorithms in medical technology applications such as Unet, Resnet, VGG net.

We initiate by providing an overview of the basic principles of deep learning. Subsequently, we delve into the applications of deep learning in the field of diagnosing and segmenting brain tumors using magnetic resonance (MR) images. Lastly, we conduct a comparative analysis of various approaches that have been explored, highlighting their respective findings and outcomes.

Keywords: deep learning, brain tumors, MRI, U-Net, convolutional neural networks

ABBREVIATIONS

MRI Magnetic Resonance Imaging

 ${f CT}$ Computed Tomography

HGG High Grade Glioma

LGG Low Grade Glioma

FLAIR Fluid Attenuated Inversion Recovery

ML Machine Learning

AI Artificial Intelligence

DL Deep Learning

CNN Convolutional Neural Networks

 ${f MLP}$ Multi Layer Perceptron

GAN Generative Adversarial Network

RNN Recurrent Neural Networks

 \mathbf{WT} Whole Tumor

TC Tumor Core

LIST OF TABLES X

 ${\bf ET}$ Enhancing Tumor

SGD Stochastic Gradient Descent

 ${f ReLU}$ Rectified Linear Unit