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Abstract

Ensuring fish freshness is a critical concern in the seafood industry due to its direct impact
on food safety, consumer trust, and economic value. Traditional assessment methods based
on human expertise and chemical analysis are often subjective, time-consuming, and imprac-
tical for real-time application. Variations in lighting, species, and storage conditions further
complicate consistency.

This project proposes an AI-powered fish freshness classification system using image-
based analysis of the fish eye. The system leverages the EfficientNetB3 architecture and
deep learning techniques to classify samples into three categories: Fresh, Highly Fresh, and
Not Fresh. To improve generalization, the model was trained on a balanced dataset with
data augmentation and evaluated using metrics such as accuracy, F1-score, and Grad-CAM.

For practical deployment, the trained model is integrated into a user-friendly Streamlit
web application, enabling real-time predictions through image uploads or webcam input.
This solution eliminates human subjectivity, enhances quality control, and offers a scalable
tool for fisheries, retailers, and consumers.

Keywords: Artificial Intelligence, Fish Freshness, Deep Learning, Computer Vision,
EfficientNetB3, Streamlit, Food Safety.
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Résumé

Garantir la fraîcheur du poisson est un enjeu essentiel dans l’industrie des produits de
la mer, car elle impacte directement la sécurité alimentaire, la confiance des consommateurs
et la valeur économique. Les méthodes d’évaluation traditionnelles, basées sur l’expertise
humaine ou des analyses chimiques, sont souvent subjectives, lentes et peu adaptées à une
utilisation en temps réel. Les variations de lumière, d’espèce et de stockage rendent les
évaluations encore plus complexes.

Ce projet propose un système intelligent de classification de la fraîcheur du poisson basé
sur l’analyse visuelle de l’œil. Le modèle repose sur l’architecture EfficientNetB3 et les
techniques de deep learning pour classer les échantillons en trois catégories : Frais, Très Frais
et Non Frais. L’apprentissage a été réalisé sur un jeu de données équilibré avec augmentation
d’images, et l’évaluation a été faite à l’aide de métriques telles que la précision, le F1-score
et Grad-CAM.

Pour une utilisation concrète, le modèle a été déployé sous forme d’une application web
conviviale avec Streamlit, permettant des prédictions en temps réel via webcam ou images
téléchargées. Cette solution supprime la subjectivité humaine, améliore le contrôle qualité,
et constitue un outil évolutif pour les pêcheries, les détaillants et les consommateurs.

Mots-clés : Intelligence Artificielle, Fraîcheur du Poisson, Deep Learning, Vision par
Ordinateur, EfficientNetB3, Streamlit, Sécurité Alimentaire.
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الملخص
المستهلك وثقة الغذاء سلامة على مباشر تأثير من لها لما ية، البحر المنتجات صناعة في حاسمة مسألة الأسماك طزاجة ضمان تعُدّ
ذاتية تكون ما غالباً وهي الـكيميائية، التحاليل أو ية البشر الخـبرة على التقييم في التقليدية الطرق وتعتمد الاقتصادية. والقيمة
الاتساق. ضمان صعوبة من يد تزُ التخزين وظروف والأنواع الإضاءة اختلافات أن كما الفوري، للتطبيق مناسبة وغير وبطيئة

نموذج على النظام يعتمد السمكة. لعين بصري تحليل على اعتماداً الأسماك طزاجة لتصنيف ًا ذكي نظاماً المشروع هذا يقترح
تدريب تم طازجة. وغير الطزاجة، شديدة طازجة، فئات: ثلاث إلى العين لتصنيف العميق التعلم وتقنيات EfficientNetB3
Grad-CAM وتقنية ،F1-scoreو الدقة، مثل مقاييس باستخدام تقييمه وتم الصور، تعزيز مع متوازنة بيانات مجموعة على النموذج

البصري. للتفسير
تحميل عبر الفوري بالتنبؤ يسمح مما Streamlit، باستخدام تفاعلي ويب تطبيق في النموذج دمج تم الاستخدام، ولتسهيل
قابلة أداة وتقديم الجودة، مراقبة وتحسين البشري، التحيزّ على القضاء في المنظومة هذه تساهم الكاميرا. باستخدام أو الصور

والمستهلـكين. والأسواق المصايد تفُيد للتوسيع
ية، البحر المنتجات صناعة الحاسوبية، ية الرؤ الآلية، الجودة مراقبة الأسماك، طزاجة الاصطناعي، الذكاء المفتاحية: الكلمات

التوريد. سلسلة تحسين الغذاء، سلامة
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INTRODUCTION

Motivation
Ensuring the freshness of fish is a critical factor in the seafood industry, directly impacting

food safety, consumer satisfaction, and economic value. The perishable nature of fish makes
rapid quality degradation inevitable, requiring reliable and accurate methods to assess fresh-
ness. Traditional methods such as sensory evaluation, which rely on human expertise, are
often subjective, inconsistent, and unsuitable for large-scale operations. With advancements
in Artificial Intelligence (AI), particularly in computer vision and deep learning, it has become
possible to automate freshness assessment, reducing human bias and increasing scalability.
This shift holds significant potential for modernizing quality control processes in fisheries
and the seafood supply chain.

Problem & Solution
The primary problem in fish freshness assessment lies in the reliance on manual, sub-

jective, and time-consuming techniques. Variations in environmental conditions, individual
expertise, and storage practices contribute to inconsistent results. Moreover, traditional
chemical and microbial testing methods, while accurate, are costly and impractical for real-
time or consumer-level use.

The proposed solution is to leverage computer vision and deep learning technologies to
develop an AI-powered system capable of analyzing visual indicators such as fish eyes, gills,
and skin. This system will provide objective, consistent, and efficient freshness classifications
(e.g., Fresh, Moderately Fresh, Spoiled). By integrating this technology into a web or mobile
application, the system can be accessible to fisheries, retailers, and consumers alike.

Research Objectives
• Develop a deep learning-based system for fish freshness classification using computer

vision techniques.

• Analyze key visual freshness indicators (e.g., fisheye clarity, gill color, skin texture) and
their correlation with quality levels.

13



• Create a scalable, user-friendly web or mobile application for real-time fish freshness
assessment.

• Address the limitations of traditional methods by providing an automated, non-invasive,
and consistent solution.

Limitations
• The model’s accuracy may vary across different fish species, requiring species-specific

adjustments.

• Dependence on high-quality input images; suboptimal lighting or blurry images may
reduce prediction reliability.

• Limited applicability to non-visual freshness indicators (e.g., smell or texture) not
captured by computer vision.

Thesis Organization
This thesis is organized into nine chapters as follows:

• Chapter 1: Foundations of Artificial Intelligence and Image Processing This
chapter introduces the core principles of Artificial Intelligence (AI), Machine Learning
(ML), and Deep Learning (DL), with an emphasis on their relevance to image-based
classification. It explains neural networks, convolutional neural networks (CNNs), and
their advantages in image recognition tasks. The chapter also covers essential image
processing techniques such as normalization, resizing, cropping, data augmentation,
and feature extraction, forming the backbone of AI-powered visual analysis.

• Chapter 2: AI in Quality Assessment This chapter explores the practical appli-
cations of AI in assessing food quality, particularly in meat, fruits, vegetables, and
fish. It discusses key visual and chemical indicators of freshness and how AI models—
such as computer vision and sensor-based systems—enable accurate and non-invasive
assessment. Challenges in AI-based classification such as class imbalance, generaliza-
tion across fish species, and lighting variations are also addressed, along with recent
advancements like transfer learning and explainability tools.

• Chapter 3: Introduction This chapter lays the foundation of the research by pre-
senting the problem statement, objectives, and motivation behind developing an AI-
powered fish freshness estimation system. It highlights the gaps in current assessment
methods, the relevance of deep learning in this domain, and the specific contributions
of this work. It also includes a detailed overview of the model development trials that
guided the final approach.

• Chapter 4: Dataset and Model Design This chapter provides a comprehensive
overview of the dataset used (FFE dataset), including its structure and class balanc-
ing strategies. It details the image preprocessing and augmentation steps performed
to enhance model robustness. The chapter explains the rationale behind choosing Ef-
ficientNetB3 as the base model and describes the custom head designed for transfer
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learning. It concludes with a discussion on model compilation and the selected loss
function.

• Chapter 5: Training and Evaluation This chapter describes the training pipeline,
including a two-phase training strategy and the use of callbacks like EarlyStopping
and learning rate scheduling. It presents the model’s performance on training and
validation datasets using metrics such as accuracy, confusion matrix, and ROC curves.
It also includes Grad-CAM visualizations to interpret model decisions and concludes
with the final test performance on unseen data.

• Chapter 6: Application and Conclusion This chapter focuses on the deployment
of the trained model into a user-friendly Streamlit web application. It outlines the
application’s workflow from image upload to prediction and feedback. The chapter
discusses key achievements and improvements of the system, as well as its limitations
and suggestions for future work.
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Part I

Background
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CHAPTER 1

FOUNDATIONS OF ARTIFICIAL INTELLIGENCE AND
IMAGE PROCESSING

1.1 Introduction

Artificial Intelligence (AI) has become a transformative force across various fields, en-
abling machines to mimic human cognitive functions such as perception, learning, and
decision-making. Within AI, Machine Learning (ML) and Deep Learning (DL) have
emerged as powerful subfields, allowing systems to learn patterns from data and make
intelligent predictions.
In recent years, these technologies have played a significant role in computer vision
and image processing, enabling applications ranging from medical diagnostics to au-
tonomous vehicles. Deep learning models, especially Convolutional Neural Networks
(CNNs), have demonstrated exceptional capabilities in image classification, object de-
tection, and segmentation.
This chapter presents the foundational concepts of AI and its subfields, followed by key
techniques in image preprocessing and feature extraction. It also introduces evaluation
metrics essential for measuring the performance of AI models in classification tasks. The
goal is to establish a strong theoretical foundation that supports the development of
intelligent vision-based systems, such as the fish freshness classification system explored
in this study.
Throughout this chapter, practical techniques are introduced alongside theoretical con-
cepts, providing a comprehensive understanding of how AI and image processing inter-
sect to solve real-world problems effectively.

1.2 Foundations of Artificial Intelligence

Artificial Intelligence (AI) is a multidisciplinary field at the intersection of computer
science, mathematics, neuroscience, and cognitive science. It aims to design systems
that can mimic human cognitive functions, including reasoning, learning, perception,
and decision-making. Within the domain of AI, two major subfields have emerged and
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revolutionized the development of intelligent systems: Machine Learning (ML) and
Deep Learning (DL).

1.2.1 Defining AI, ML, and DL

1.2.1.1 Artificial Intelligence (AI):

AI is the broadest term referring to machines or systems that can simulate aspects
of human intelligence. The capabilities of AI range from rule-based expert systems
to sophisticated models that can interpret images, play chess, or generate human-like
language [1].

1.2.1.2 Machine Learning (ML):

ML is a subset of AI that focuses on algorithms that improve automatically through
experience. Instead of being explicitly programmed, ML models learn patterns from
data to make predictions or decisions. The key categories include:

– Supervised Learning: Models are trained using labeled datasets.
– Unsupervised Learning: Models discover hidden patterns in data without la-

bels.
– Reinforcement Learning: Agents learn by interacting with an environment

and receiving feedback.

1.2.1.3 Deep Learning (DL):

DL is a subfield of ML based on artificial neural networks with many layers (deep
architectures). It is particularly effective for unstructured data such as images, audio,
and text. DL models can automatically extract hierarchical features and are the foun-
dation of modern AI breakthroughs, such as image classification, speech recognition,
and generative models [2].

1.2.2 Neural Networks and Learning Mechanisms

1.2.2.1 Artificial Neural Networks (ANNs):

ANNs are computational models inspired by the human brain’s network of neurons.
They consist of layers: input, hidden, and output. Each neuron receives input, applies a
transformation (usually a weighted sum followed by an activation function), and passes
the result to the next layer. ANNs are the building blocks of many ML and DL models
[2].
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1.2.2.2 Training and Optimization:

Neural networks are trained using datasets with the goal of minimizing prediction
error. This process begins with forward propagation, where the network computes
output predictions based on the input data. The loss function is then used to mea-
sure the difference between the predicted outputs and the true values. To improve
the model, backpropagation calculates the gradients of the loss with respect to the net-
work’s weights. Finally, gradient descent is applied to update the weights in a direction
that minimizes the loss, progressively enhancing the network’s performance.

1.2.3 Convolutional Neural Networks (CNNs)

CNNs are specialized neural networks designed for processing visual data. Unlike tra-
ditional ANNs, CNNs leverage the spatial structure of images. They use convolutional
layers to extract features such as edges and shapes, pooling layers to reduce dimension-
ality, and fully connected layers for classification. The overall architecture of a typical
CNN used for image classification is illustrated in Figure 1.1.

Figure 1.1: CNN architecture for image classification [3]

1.2.3.1 Advantages of CNNs:

– Automatic feature extraction from raw image data.
– Parameter sharing and local connectivity, reducing complexity.
– Translation and scale invariance.

CNNs are especially effective in image-based tasks, such as those used in this project
for classifying fish freshness based on eye characteristics.

1.2.4 Real-World Applications of AI

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have
penetrated nearly every domain of modern technology. In healthcare, they are used
for diagnosis through medical imaging, drug discovery, and personalized treatment
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plans. In the finance sector, they enhance risk assessment, detect fraud, and enable
algorithmic trading. Transportation has seen advancements through the development
of autonomous vehicles and improved traffic management systems.
In retail, intelligent systems analyze customer behavior and power recommendation
engines. Furthermore, in environmental science, they are applied to predict climate
changes and monitor wildlife populations. These wide-ranging applications highlight
the flexibility and profound impact of intelligent systems across industries.

1.2.5 AI in Fish Freshness Estimation

In this project, we leverage AI—specifically CNN-based deep learning—for the auto-
mated assessment of fish freshness. This approach enables accurate, fast, and objective
grading, replacing subjective and time-consuming traditional methods. The system
processes images of fish eyes and classifies them into freshness levels: Fresh, Moder-
ately Fresh, or Spoiled.

The fusion of AI and computer vision enables transformative applications
in food quality control, and this project exemplifies its use in the fisheries
industry.

1.3 Image Processing Techniques in Computer Vi-
sion

Image processing is a fundamental step in the computer vision pipeline, as it prepares
and enhances images to improve the performance of machine learning and deep learning
models. This section explores key techniques used in image preprocessing and feature
extraction, which play a crucial role in improving model accuracy and generalization.

1.3.1 Image Preprocessing Techniques

Preprocessing techniques ensure that input data is consistent, noise-free, and tailored
to the input requirements of neural networks. Proper preprocessing helps reduce com-
putational costs, improve model convergence, and standardize data across the dataset.

1.3.1.1 Normalization

Normalization scales pixel values to a specific range (commonly [0, 1]) to reduce in-
consistencies in image intensities caused by lighting variations. Deep learning models
such as CNNs benefit from normalized inputs as it accelerates convergence and avoids
gradient-related issues.

Common Normalization Methods:
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– Min-Max Normalization:

x′ = x − xmin

xmax − xmin

– Z-score Normalization:
x′ = x − µ

σ

1.3.1.2 Image Resizing and Cropping

Neural networks require fixed-size inputs. Resizing ensures all input images are of
the same shape (e.g., 224 × 224 or 299 × 299), while cropping helps remove irrelevant
background, focusing on the object of interest.
Two cropping strategies were employed to optimize the model’s ability to focus on
relevant visual features. Center cropping was used to systematically remove border
regions and retain the central portion of the image, where the fish eye is typically
located. This ensures that critical anatomical details are preserved. On the other hand,
random cropping was applied during training to introduce variability and improve the
model’s robustness. By exposing the model to slightly different portions of the image
in each epoch, random cropping helps mitigate overfitting and enhances generalization.

1.3.1.3 Data Augmentation

Data augmentation increases the diversity of training data by applying random trans-
formations. This simulates real-world variations and improves the generalization ability
of the model.
To improve the model’s generalization and robustness, several common image augmen-
tation techniques were applied during training. Rotation was used to simulate different
orientations of the fish eye, ensuring the model learns to recognize features from multi-
ple angles. Flipping, both horizontal and vertical, introduced mirrored perspectives to
further increase data diversity. Brightness and contrast adjustments mimicked varying
lighting conditions typically encountered in real-world settings. Lastly, zooming and
shearing operations helped the model adapt to scale changes and subtle perspective
shifts, making it more resilient to variability in image capture.

1.3.2 Feature Extraction Techniques

After preprocessing, feature extraction identifies the most informative aspects of an
image. These features serve as inputs for classification models, helping to reduce di-
mensionality and focus on essential patterns.

1.3.2.1 Edge Detection

Edge detection algorithms highlight transitions in intensity, which often correspond to
object boundaries or texture changes.
Several classical edge detection algorithms were explored to highlight structural features
within fish eye images. The Sobel operator calculates intensity gradients in horizontal
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and vertical directions, effectively capturing edge transitions. The Canny edge de-
tector employs a multi-stage process—including noise reduction, gradient calculation,
non-maximum suppression, and edge tracking—to produce accurate and robust edge
maps. Additionally, the Prewitt operator, which is conceptually similar to Sobel, of-
fers a simpler approach for detecting gradients and delineating basic edge structures in
images.

1.3.2.2 Color Analysis

Color analysis helps in classifying and segmenting images based on hue, saturation, and
brightness, which can indicate freshness or ripeness in biological images.
Color-based feature extraction techniques are commonly used in image analysis. Color
histograms provide a quantitative representation of the distribution of colors within
an image, which can be useful for distinguishing freshness levels based on visual cues.
Additionally, HSV color segmentation allows for more effective color isolation, enabling
the model to detect specific hues such as redness, which is often associated with spoilage
in fish.

1.3.2.3 Texture and Shape Features

For tasks such as fish freshness estimation, analyzing the texture of gills or the shape
of the eyes can be crucial.
Texture-based feature extraction methods are essential for capturing surface patterns
and fine details in images. Gabor filters are widely used to extract texture information
by analyzing image content at various orientations and scales, making them suitable
for biological textures such as those found in fish eyes. Meanwhile, the Histogram
of Oriented Gradients (HOG) technique encodes the structure and shape of objects
by computing the distribution of gradient directions, which helps in identifying visual
patterns relevant to classification tasks.

1.3.3 Role of Image Processing in Fish Freshness Estimation

In our system, image processing ensures that fisheye images are clean, standardized,
and informative. Techniques such as resizing, normalization, and augmentation im-
prove model learning. Feature extraction from eye clarity, color intensity, and shape
contributes to the accurate classification of freshness into categories like Fresh, Moder-
ately Fresh, or Spoiled. The examples are illustrated in Figure 1.2.

Figure 1.2: Examples of data augmentation techniques [4]
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1.4 Evaluation Metrics for AI Models

Evaluating the performance of AI models is essential to understanding how well they
perform on real-world data. In classification tasks, such as fish freshness prediction,
different metrics provide different insights. This section explains the most commonly
used evaluation metrics, their mathematical definitions, and their relevance in practice.

1.4.1 Classification Metrics Overview

When evaluating models in supervised classification tasks, we use several metrics to
assess different aspects of performance. These metrics rely on the confusion matrix,
which summarizes the counts of:

– True Positives (TP): Correctly predicted positive cases.
– True Negatives (TN): Correctly predicted negative cases.
– False Positives (FP): Incorrectly predicted positive cases.
– False Negatives (FN): Incorrectly predicted negative cases.

1.4.1.1 Accuracy

Accuracy measures the proportion of correctly predicted samples out of the total num-
ber of predictions:

Accuracy = TP + TN

TP + TN + FP + FN

It provides a general idea of model performance but may be misleading in imbalanced
datasets.

1.4.1.2 Precision

Precision focuses on the quality of positive predictions:

Precision = TP

TP + FP

It answers the question: “Of all predicted positives, how many were correct?”

1.4.1.3 Recall (Sensitivity)

Recall, also known as sensitivity or true positive rate, measures the model’s ability to
detect all positive samples:

Recall = TP

TP + FN

It answers the question: “Of all actual positives, how many did the model correctly
identify?”
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1.4.1.4 F1 Score

The F1 score is the harmonic mean of precision and recall. It provides a balanced
measure when there is a trade-off between the two:

F1 Score = 2 · Precision · Recall
Precision + Recall

F1 is especially useful in imbalanced classification problems, where accuracy alone can
be deceptive.

1.4.1.5 Confusion Matrix

The confusion matrix is a visual tool used to summarize prediction results. It shows
the counts of actual vs predicted labels, making it easier to see where misclassifications
occur. Each row represents the actual class, while each column represents the predicted
class.

1.4.1.6 Macro vs Micro Averaging (Multiclass)

For multiclass classification (e.g., Fresh, Moderately Fresh, Spoiled), we compute macro-
averaged and micro-averaged metrics:

– Macro-average: Calculates metric independently for each class, then takes the
average. It treats all classes equally.

– Micro-average: Aggregates contributions of all classes to compute the metric
globally. It favors larger classes.

1.4.2 ROC Curve and AUC (for Binary Classification)

The Receiver Operating Characteristic (ROC) curve plots the true positive rate (TPR)
against the false positive rate (FPR) at different classification thresholds. The Area
Under the Curve (AUC) summarizes the ROC curve into a single score:

AUC ∈ [0.5, 1.0]

A model with AUC = 1.0 is perfect; AUC = 0.5 is random guessing. ROC-AUC is
primarily used for binary classification.

1.4.3 Why These Metrics Matter in Our Project

In our fish freshness classification system, we rely on accuracy, precision, recall, and the
F1 score to measure how well the model performs in distinguishing between freshness
levels. A confusion matrix and F1 score help detect which classes the model struggles
with most — such as misclassifying moderately fresh as spoiled, or vice versa — which
is critical for real-world application.
Example: If the model has high accuracy but low recall for the “Spoiled” class, it may
frequently fail to identify spoiled fish — which is unacceptable in food safety scenarios.
Thus, a combination of metrics provides a holistic view of model performance.
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CHAPTER 2

AI IN QUALITY ASSESSMENT

2.1 Applications of AI in Food Quality Control

Artificial Intelligence (AI) has become a game-changer in food quality control by en-
abling faster, more accurate, and scalable solutions for assessing the freshness and
safety of food products. Traditionally, food inspection methods relied heavily on hu-
man sensory evaluation or laboratory testing, which can be subjective, labor-intensive,
and impractical for large-scale operations. The integration of AI—particularly machine
learning (ML) and deep learning (DL)—has opened new avenues for automating quality
assessment through image analysis, sensor data interpretation, and pattern recognition
[2, 5].
Modern AI systems can detect subtle variations in texture, color, and chemical compo-
sition that are invisible to the human eye. These systems not only improve the accuracy
of assessments but also reduce operational costs and ensure consistency in food safety
standards.
This section explores AI applications in the evaluation of meat, fruits, vegetables, and
fish—highlighting the methods, technologies, and benefits associated with each domain.
Figure 2.1 presents a general overview.

2.1.1 Meat Freshness Detection

Meat freshness is vital for ensuring food safety, nutritional value, and consumer trust.
Spoiled meat can harbor harmful bacteria such as Salmonella or E. coli, posing serious
health risks. AI-based techniques now offer objective, non-invasive, and real-time meat
evaluation using visual and chemical cues [6].

2.1.1.1 Techniques Used in AI-Based Meat Freshness Detection:

– Computer Vision: Deep CNNs analyze images of meat for changes in surface
color, texture granularity, and marbling patterns to estimate spoilage levels.
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Figure 2.1: AI in quality assessment

– Spectral Imaging: AI interprets hyperspectral data to detect internal changes
in water content and myoglobin concentration—indicators of freshness.

– Electronic Nose (E-Nose): AI-driven olfactory sensors mimic human smell to
detect volatile compounds produced during decomposition.

2.1.1.2 Benefits:

Computer vision and AI techniques provide rapid and accurate meat classification with-
out the need for destructive sampling. They enable continuous monitoring throughout
slaughterhouses and cold chain logistics, ensuring that freshness and quality standards
are maintained. Additionally, these technologies help businesses ensure regulatory
compliance and reduce the risk of costly product recalls.

2.1.2 Fruit and Vegetable Quality Estimation

The appearance and internal quality of fruits and vegetables are key determinants of
market value and consumer satisfaction. AI plays a central role in automating produce
grading, sorting, and defect detection by leveraging visual and spectral cues [7].

2.1.2.1 Key AI Techniques for Fruit and Vegetable Quality Estimation:

Image Processing techniques are employed wherein machine learning models extract
color histograms and texture descriptors to assess ripeness levels or detect bruises and
other defects in produce. In parallel, Convolutional Neural Networks (CNNs)
are widely used for classification tasks, enabling the identification of overripe, spoiled,
or damaged produce through detailed surface anomaly detection. Additionally, Spec-
troscopy and Sensor Fusion approaches integrate data from sources such as near-
infrared (NIR) spectroscopy, moisture sensors, and traditional visual inputs, allowing
AI models to deliver a more holistic and accurate prediction of overall produce quality.
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2.1.2.2 Advantages:

Computer vision systems play a crucial role in the agricultural sector by reducing
post-harvest losses through the early identification of defective items. They enhance
grading accuracy in packing and distribution centers, ensuring that only high-quality
produce reaches consumers. Furthermore, these technologies facilitate dynamic pricing
strategies and improve shelf-life prediction, optimizing both inventory management and
profitability.

2.1.3 Adaptation to Fish Freshness Detection

Fish freshness degrades rapidly after harvesting, making it essential to evaluate its
quality promptly and accurately. Traditional methods like the Torry sensory scale or
chemical assays (e.g., TVB-N, TMA) are reliable but slow and labor-intensive. AI mod-
els, particularly CNN-based vision systems, offer faster, scalable alternatives suitable
for use in processing facilities, markets, and even consumer mobile apps [8].

2.1.3.1 Visual and Chemical Indicators of Fish Freshness:

Eye Clarity and Convexity serve as critical indicators of fish freshness, where a fresh
fish typically displays clear, convex eyes, while cloudiness and a flattened appearance
suggest the onset of spoilage. Similarly, Gill Color and Texture are vital parameters;
bright red gills are associated with high freshness, whereas darkened, slimy, or discolored
gills point to progressive decay. Lastly, Skin Glossiness and Firmness provide visual
and tactile cues, with the loss of surface shine and a decrease in skin firmness signaling
a decline in overall fish quality.

2.1.3.2 AI Approaches for Fish Freshness Estimation:

Computer Vision with CNNs is widely applied to analyze critical regions such as
the fish eye and gills, classifying freshness levels with the help of pretrained convolu-
tional models like ResNet or EfficientNet. This approach enables automated, objective
evaluations based on subtle visual features. In parallel, Electronic Nose (E-Nose)
technologies detect gases related to spoilage, such as hydrogen sulfide and ammonia,
using AI algorithms to interpret data from gas sensor arrays with high precision. Fur-
thermore, Multispectral Imaging merges reflectance and fluorescence information,
enhancing the detection of early biochemical spoilage markers that are not visible to
the naked eye. By integrating AI models, multispectral imaging offers a deeper and
more sensitive analysis of food freshness.

2.1.3.3 Benefits:

Computer vision-based freshness assessment offers an objective and repeatable method
for evaluating food quality. It enables non-invasive quality checks during transportation
and sale, ensuring that products maintain their integrity throughout the supply chain.
Additionally, this approach aligns with sustainable practices by minimizing food waste
and reducing the need for chemical preservatives.
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In conclusion, AI is revolutionizing food quality control by offering intelligent, rapid,
and scalable solutions. In the case of fish, it allows real-time classification of freshness
based on physical and chemical indicators, ultimately supporting both industry and
consumer needs.
—

2.2 Challenges in AI-Based Fish Freshness Detec-
tion

Despite the advancements in AI for fish freshness estimation, several challenges hinder
its widespread adoption and effectiveness. These challenges primarily arise from envi-
ronmental variability, data imbalances, and generalization issues across different fish
species. Addressing these challenges is crucial for improving the accuracy and reliability
of AI-based freshness detection systems [8, 2].
—

2.2.1 Variations in Lighting and Environmental Factors

Lighting conditions significantly affect the performance of AI-based fish freshness de-
tection systems. Inconsistent lighting introduces variations in image brightness, con-
trast, and color, which can mislead machine learning models [7]. Additionally, envi-
ronmental factors such as temperature and humidity influence fish appearance and can
affect the accuracy of predictions.

2.2.1.1 Key Issues:

– Shadows, glare, and reflections in images distort key freshness indicators.
– Temperature fluctuations affect fish eye clarity and gill coloration.
– Inconsistent backgrounds introduce noise, leading to potential misclassification.

2.2.1.2 Potential Solutions:

– Use adaptive image preprocessing techniques such as histogram equalization
to normalize brightness and contrast.

– Implement data augmentation (brightness adjustments, white balance correc-
tion) to make models robust to lighting variations.

– Employ multi-spectral imaging to capture more reliable spectral data for fresh-
ness estimation.

—
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2.2.2 Class Imbalance in Datasets

One of the major challenges in training AI models for fish freshness detection is the
imbalance in dataset distribution. In many cases, datasets contain significantly more
images of fresh fish compared to spoiled fish, leading to biased model predictions [9].

2.2.2.1 Impact of Class Imbalance:

Models tend to favor the majority class, such as fresh fish, while often failing to ac-
curately predict minority classes like moderately fresh or spoiled fish. This imbalance
results in poor model generalization, leading to an increased number of false negatives,
which can compromise food safety by incorrectly labeling spoiled fish as safe. Fur-
thermore, imbalanced datasets reduce training effectiveness, causing models to learn
suboptimal decision boundaries that hinder overall classification performance.

2.2.2.2 Techniques to Address Class Imbalance:

Several strategies can be employed to address class imbalance. Data Augmentation
involves the synthetic generation of minority-class images through transformations such
as flipping and rotation, enriching dataset diversity. Resampling Methods include
techniques like oversampling the minority class using SMOTE (Synthetic Minority
Over-sampling Technique) or undersampling the majority class to achieve balance.
Cost-Sensitive Learning introduces higher misclassification penalties for underrep-
resented classes, encouraging the model to focus more on difficult cases. Additionally,
Class-Balanced Loss Functions adjust the loss computation during training to com-
pensate for unequal class distributions, leading to fairer and more accurate learning.

2.2.3 Generalization Across Fish Species and Sizes

Fish species exhibit diverse physical characteristics, including variations in eye clarity,
gill structure, and body texture. AI models trained on specific fish species may struggle
to generalize across different species and fish sizes [8].

2.2.3.1 Key Challenges:

– Variations in eye size, color intensity, and gill structures lead to inconsistent
model predictions.

– Fish of different sizes may require different preprocessing steps to standardize
features.

– Species with naturally cloudy eyes may be incorrectly classified as ”spoiled” due
to dataset biases.

2.2.3.2 Potential Solutions:

– Train models on diverse multi-species datasets to improve robustness.
– Use transfer learning with pre-trained models to adapt to different fish species.
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– Implement feature extraction standardization techniques to ensure model
consistency across fish sizes.

Improving model generalization is essential to ensure reliable AI-powered freshness
detection across different fish species and environmental conditions.
—

2.3 Recent Advancements in AI-Based Classifica-
tion

Advancements in AI-based classification have significantly improved the accuracy, effi-
ciency, and interpretability of machine learning models in various applications, includ-
ing fish freshness detection. These advancements include the use of pretrained mod-
els for transfer learning, lightweight architectures like MobileNet and SqueezeNet,
and explainability techniques such as Grad-CAM [2, 10].
—

2.3.1 Pretrained Models for Transfer Learning

2.3.1.1 Concept of Transfer Learning:

Transfer learning allows AI models to leverage knowledge from pre-trained net-
works, reducing the need for large datasets and extensive training. A model trained
on a large dataset like ImageNet can be fine-tuned for specific applications, such as
fish freshness classification, by modifying its final layers [11]. See Figure 2.2.

2.3.1.2 Advantages:

Transfer learning offers multiple advantages in deep learning applications. It reduces
computational cost and training time by leveraging pre-trained models instead of train-
ing from scratch. Additionally, it improves model accuracy on small and specialized
datasets by transferring knowledge from large-scale datasets. Finally, it prevents over-
fitting by utilizing robust pre-learned features, ensuring that models generalize better
even when limited training data is available.

2.3.1.3 Commonly Used Pretrained Models:

– ResNet (Residual Networks) – Suitable for deep learning tasks with minimal
degradation in accuracy.

– VGG (Visual Geometry Group Networks) – Effective for image classification
tasks.

– EfficientNet – Optimized for high performance with fewer parameters.

Transfer learning is particularly beneficial in fish freshness detection, where obtaining
large annotated datasets is challenging.
—
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Figure 2.2: Transfer-learning [12]

2.3.2 Use of Models (e.g., MobileNet, SqueezeNet, Efficient-
Net...)

Lightweight models such as MobileNet and SqueezeNet have been developed to en-
hance computational efficiency, making AI-based classification feasible on edge devices
and mobile applications [13].

2.3.2.1 MobileNet:

MobileNet is designed for real-time image classification with reduced computational
cost. It employs depthwise separable convolutions to minimize the number of
parameters while maintaining high accuracy. See Figure 2.3.

2.3.2.2 SqueezeNet:

SqueezeNet is a compact neural network architecture that significantly reduces the
number of parameters while achieving similar accuracy levels to larger models. It
uses fire modules, which replace conventional convolutional layers with squeeze and
expand operations to improve efficiency. As presented in Figure 2.4.
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Figure 2.3: MobileNet Architecture [14]

Figure 2.4: Squeeze-net Architecture [15]

2.3.2.3 EfficientNet

EfficientNet is a family of CNN architectures developed by Google that balances
model accuracy and computational efficiency. It uses a compound scaling method
that uniformly scales depth, width, and resolution. In fish freshness classification,
EfficientNet has shown high performance with fewer parameters, making it ideal for
applications requiring both speed and precision. As presented in Figure 2.5.

2.3.2.4 ResNet

ResNet (Residual Network) introduced the concept of residual connections,
allowing much deeper networks to be trained effectively by mitigating the vanishing
gradient problem. ResNet models are known for their robustness and accuracy, espe-
cially in complex classification tasks such as identifying subtle changes in fish eyes and
gills. As presented in Figure 2.6.
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Figure 2.5: EfficientNet Architecture [16]

Figure 2.6: Resnet-net Architecture [17]

2.3.2.5 Advantages of Lightweight Models:

Lightweight models provide significant advantages in practical AI deployments. They
offer a reduced memory footprint, making them suitable for mobile and embedded
applications. Additionally, they deliver faster inference time, which is essential for
real-time applications. Moreover, they have a lower computational cost, requiring
less processing power compared to deeper architectures such as ResNet.
These lightweight models are ideal for fish freshness detection in real-world scenarios,
where real-time analysis and deployment on portable devices are required.
—

2.3.3 Explainability Techniques (e.g., Grad-CAM)

Despite the high accuracy of deep learning models, their black-box nature makes
it difficult to interpret how decisions are made. Explainability techniques such
as Gradient-weighted Class Activation Mapping (Grad-CAM) enhance trans-
parency in AI-based classification systems [18].

2.3.3.1 What is Grad-CAM?

Grad-CAM visualizes the regions of an image that influence a model’s prediction. It
overlays a heatmap on the input image, highlighting the most important features that
contribute to the classification decision.
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2.3.3.2 How Grad-CAM Works:

1. Computes the gradient of the output category with respect to feature maps of the
last convolutional layer.

2. Weighs these gradients to understand the impact of different spatial locations.
3. Generates a heatmap that highlights important regions in the input image.

Figure 2.7 explains more how Grad-CAM works:

Figure 2.7: Grad-CAM [19]

2.3.3.3 Benefits of Explainability Techniques:

Visualization techniques play a critical role in enhancing the transparency of AI models.
They improve trust and interpretability in AI-based classification tasks, allowing
users to better understand model behavior. Additionally, they help detect biases and
model errors during decision-making processes. Furthermore, visualizations assist
researchers in refining model architecture and improving the effectiveness of feature
extraction.
Grad-CAM is particularly useful in fish freshness classification, where decision-making
transparency is essential for quality control and regulatory compliance.
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Contribution
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CHAPTER 3

INTRODUCTION

3.1 Introduction

Ensuring the freshness of fish is a critical concern in the food industry due to its direct
impact on consumer safety, product quality, and market value. Spoiled or degraded
fish not only pose health risks due to microbial contamination and biochemical spoilage
compounds but also result in significant economic losses across the supply chain. Tra-
ditional methods of freshness assessment—such as manual inspection based on sensory
attributes (e.g., eye clarity, gill color, skin texture) or laboratory-based chemical anal-
yses (e.g., TVB-N, TMA, or pH tests)—are widely used but suffer from several lim-
itations. These approaches are often subjective, time-consuming, require specialized
expertise or equipment, and are not suitable for real-time, large-scale deployment.
With the rapid advancement of Artificial Intelligence (AI) and particularly computer
vision, there is now an opportunity to develop automated systems capable of deliv-
ering objective, fast, and consistent assessments of fish freshness. In recent years,
Convolutional Neural Networks (CNNs) have demonstrated strong performance in im-
age classification tasks across various domains, including medical imaging, agriculture,
and food quality control. By learning complex patterns and visual cues, CNNs can
be trained to distinguish between subtle differences in freshness levels based on image
data alone.
This project proposes the design and implementation of an AI-powered fish freshness
estimation system that utilizes images of fish eyes—a well-recognized visual indica-
tor of spoilage—to classify samples into three predefined categories: Fresh, Highly
Fresh, and Not Fresh. The system is based on a deep learning model built using
the EfficientNetB3 architecture, selected for its balance between high accuracy and
computational efficiency. The model is trained on a carefully curated and augmented
dataset of labeled fish eye images to ensure robustness and generalizability.
To enhance accessibility and usability, the trained model will be integrated into a
streamlined web-based interface, allowing users—such as fish vendors, quality inspec-
tors, or consumers—to upload fish images or capture them via webcam and receive
instant predictions. This system aims to bridge the gap between laboratory-grade ac-
curacy and field-level usability, offering a scalable solution for real-time fish freshness
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detection across various stages of the seafood supply chain.

3.2 Problem Statement

Manual methods for assessing fish freshness suffer from several limitations. These tra-
ditional approaches—often based on sensory evaluation of visual attributes (such as eye
clarity, gill color, and skin texture), olfactory cues, or chemical tests—are inherently
subjective. Evaluators may interpret signs of spoilage differently, leading to significant
inter-observer variability and inconsistency in assessments. Furthermore, such evalua-
tions are time-consuming and impractical for high-throughput environments such as fish
markets, processing plants, or distribution chains where rapid decisions are required.
Chemical analysis techniques, such as Total Volatile Basic Nitrogen (TVB-N), Thiobar-
bituric Acid (TBA), and microbial assays, although accurate, are destructive, labor-
intensive, and require expensive reagents and equipment, which limits their use in
everyday or field conditions. These drawbacks hinder real-time monitoring and limit
accessibility in resource-constrained settings.
With increasing global emphasis on food safety, supply chain transparency, and con-
sumer awareness, there is a growing need for a system that can offer rapid, consistent,
and cost-effective freshness evaluation. This is particularly crucial in reducing food
waste, improving product quality, and ensuring compliance with health standards.
One of the most reliable visual indicators of freshness in fish is the eye, which undergoes
noticeable changes in clarity, color, convexity, and glossiness as spoilage progresses.
Leveraging advancements in computer vision and artificial intelligence, particularly
Convolutional Neural Networks (CNNs), presents an opportunity to develop a fully
automated solution that can detect and classify freshness levels with high accuracy
based on fish eye images.
Therefore, this project aims to design a scalable, AI-powered fish freshness estimation
system that uses image-based analysis of the fish eye to deliver real-time predictions.
Such a system would eliminate subjectivity, enhance scalability, and significantly im-
prove the efficiency and reliability of freshness detection across the seafood supply
chain.

3.3 Objectives

– Develop a deep learning model capable of classifying fish eye images into three
freshness categories.

– Train and evaluate the model using a well-balanced dataset of fish eye images
from multiple species.

– Visualize model decisions using Grad-CAM for explainability.
– Deploy the model in a responsive web application for real-time use.
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3.4 Motivation

The use of AI in food quality control is rapidly expanding, with a particular focus on
image-based freshness prediction. Fish eyes are known to change significantly during
spoilage, making them ideal candidates for visual inspection through computer vision
techniques. Automating this process allows greater consistency, speed, and accessibility
to end-users, from consumers to fishery professionals.

3.5 Related Work

Several studies have explored AI and computer vision approaches for assessing fish
freshness:
The study by Yildiz [20] developed a deep learning-based fish freshness detec-
tion system that combines the strengths of convolutional and fully connected neural
networks. Specifically, the authors employed the VGG19 architecture for feature
extraction and used an Artificial Neural Network (ANN) for the classification
task. The model was trained on the Freshness of Fish Eyes (FFE) dataset, which
contains images representing different levels of freshness based on the appearance of
the fish eye.
The system achieved a 77.3% classification accuracy, demonstrating the potential
of transfer learning in food quality assessment applications. It successfully identified
visual features such as eye cloudiness and shape deformation, which are strong
indicators of spoilage. The authors further suggested that integrating multispectral
imaging techniques could enhance performance by capturing underlying biochemi-
cal changes, thus offering a more robust and objective evaluation of fish freshness.
Figure 3.1 below present an overview of this study.

Figure 3.1: Study by Yildiz [20]

Also, a study by Banwari [21] proposed a computer vision-based method for
estimating fish freshness by analyzing segmented images of fish eyes. This work
employed classical image processing algorithms to extract visual features that
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correlate with various stages of spoilage. In particular, the technique emphasized the
extraction of color and texture variations in the eye region, which are known to
deteriorate as the fish loses freshness.
The authors reported that their model achieved a high classification accuracy,
effectively distinguishing between fresh and degraded samples. One of the major con-
tributions of this study is its focus on non-destructive evaluation, offering a fast
and objective alternative to traditional chemical tests. By eliminating the need for
invasive sampling, the proposed approach is especially well-suited for real-time qual-
ity control applications in fish markets and processing plants. Figure 3.2 presents this
study.

Figure 3.2: Study by Banwari [21]

The study demonstrates the potential of targeted image analysis for automated
fish freshness detection and suggests future improvements using deep learning-
based segmentation techniques.

Also, a study by Prasetyo [8] proposed a lightweight deep learning approach for classi-
fying fish freshness based on eye appearance using a modified MobileNet architecture.
Their model, named MobileNetV1 with Bottleneck and Expansion (MB-BE), intro-
duces depthwise separable convolution bottlenecks combined with residual transitions
to improve feature extraction efficiency. The authors conducted extensive ablation
studies using the same FFE dataset and reported that their best configuration achieved
a test accuracy of 63.21%. This result outperformed classical MobileNet, VGG16,
DenseNet, and NASNet models in both performance and parameter efficiency. Al-
though their model was less accurate than ResNet50, it required significantly fewer
parameters, making it more suitable for real-time or mobile applications. This work
highlights the trade-off between model size and performance and demonstrates the po-
tential of architectural innovations in handling subtle visual differences in fish freshness
classification tasks.

Alsom, a study by Shi [22] explored the use of computer vision techniques to
detect fish freshness by analyzing both chemical and biological indicators. Their
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research emphasized the importance of integrating chemical metrics such as Total
Volatile Base Nitrogen (TVB-N), which serves as a critical marker of spoilage,
and Thiobarbituric Acid (TBA) levels, which are associated with lipid oxidation
and rancidity.
To model the relationship between visual features and chemical indicators, the authors
employed deep learning regression models, achieving a high correlation coef-
ficient of 0.98. This result demonstrated the model’s strong predictive capability
for assessing fish freshness. The study concluded that a hybrid approach combining
chemical analysis with image-based features provides a more accurate and reli-
able system for freshness evaluation.
While these studies demonstrated the feasibility of automated fish freshness classifica-
tion, most of them lacked a deployment-ready implementation, generalization across
species, or explainability through visualization.

3.6 Contribution of This Work

3.6.1 Model Development Trials

The final fish freshness classification model was the result of multiple iterative exper-
iments, each shedding light on important architectural, data handling, and training
adjustments. Below is a chronological summary of the major trials conducted, their
limitations, and how they informed the final system design.

Trial 1: EfficientNetB0 (Single-Phase Training, 24 Classes). The first attempt
used EfficientNetB0 with a single-phase training setup and an input size of 224×224.
The classification problem was modeled with 24 classes, each representing a unique
combination of fish species and freshness level. Although the model learned quickly and
showed steady improvement across 20 epochs, validation accuracy stagnated around
40%–41% (See Figure 3.3), The main challenges identified were:

– Significant class imbalance among the 24 categories.
– High inter-class similarity due to overlapping visual patterns.
– Limited discriminative features available in some species for each freshness level.

Trial 2: ResNet50V2 (Single-Phase Training, 24 Classes). In the second trial,
the architecture was switched to ResNet50V2, a deeper CNN model, also trained
for 20 epochs in a single phase. Despite its greater representational power, the model
encountered similar challenges. While early training accuracy improved, the validation
accuracy stayed below 60% (See Figure 3.4), likely due to:

– Overfitting to the complex multi-class target.
– Lack of sufficient regularization.
– Inadequate data augmentation.
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Figure 3.3: Trial 1

Figure 3.4: Trial 2

Trial 3: EfficientNetB3 (Two-Phase Training, 24 Classes). The third experi-
ment introduced EfficientNetB3 and a more advanced two-phase training strategy.
In Phase 1, the base layers were frozen and only the custom classification head was
trained. In Phase 2, the top 50 layers of the base model were unfrozen and fine-tuned
at a lower learning rate. This method achieved promising results (validation accuracy
up to ∼77%)(See See Figure 3.5), but generalization remained suboptimal due to the
complexity of 24-class classification and class imbalance.

Key Shift: Simplification to 3 Classes. Recognizing the difficulty of 24-class
classification, the problem was reframed into a 3-class task — Highly Fresh, Fresh,
and Not Fresh — regardless of species. This simplification was accompanied by:

– A fully balanced dataset with 1043 images per class for training and 264 for testing.
– Stronger data augmentation (rotation, shear, zoom, flip, brightness).
– Enhanced regularization via dropout layers and ReduceLROnPlateau.
– Inclusion of Batch Normalization and two dense layers (512 and 256 units).
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Figure 3.5: Trial 3

Final Result. These improvements led to a robust and generalizable model that
achieved:

– Validation Accuracy: ∼83%
– Test Accuracy: 81.06%
– Excellent separation across classes, as shown by ROC curves and confusion matrix

evaluations.

Each trial built upon the insights of its predecessor, ultimately producing a well-
regularized and high-performing classifier capable of predicting fish freshness from eye
images in a real-world setting. This work advances prior studies in several significant
ways. First, it employs a more powerful backbone architecture—EfficientNetB3 (See
See Figure 3.7) —along with optimized dropout and data augmentation strategies to
enhance generalization. Second, the model is trained on a balanced dataset comprising
three freshness classes distributed across eight different fish species, ensuring robustness
across categories. Third, it achieves a higher test accuracy of 81.06%, outperforming
the 2024 benchmark model based on VGG19. Finally, it incorporates Grad-CAM for
explainability and is deployed as a real-time web application using Streamlit, bridging
the gap between research and end-user accessibility.
See Figure 3.6 represents a general overview of the successful structure and how it
works.

3.7 Chapter Summary

This chapter provided a comprehensive overview of the challenges associated with tra-
ditional fish freshness assessment methods, highlighting their inherent limitations such
as subjectivity, lack of scalability, and reliance on expert intervention. It also examined
the growing body of literature surrounding AI-based and computer vision-driven ap-
proaches, emphasizing the potential of these technologies to deliver accurate, efficient,
and non-invasive freshness estimation.
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Figure 3.6: Graphical Abstract

Figure 3.7: EfficientNetB3-architecture

Through this review, the proposed project was contextualized as a practical and innova-
tive solution that leverages deep learning—specifically, the EfficientNetB3 architecture—
to automate freshness classification based on visual characteristics of the fish eye. By
addressing existing gaps in reliability, real-time applicability, and ease of use, this sys-
tem aims to contribute a more robust, generalizable, and deployable alternative to
current practices.
The next chapter delves into the theoretical and technical foundations underpinning
this work, covering essential concepts in artificial intelligence, machine learning, and
image processing that inform the design and implementation of the proposed system.
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CHAPTER 4

DATASET AND MODEL DESIGN

4.1 FFE Dataset Description

The dataset used in this project is the Freshness of Fish Eyes (FFE) dataset [23], a
public dataset available on Mendeley Data . It consists of a total of 4392 fish eye images
belonging to eight different species. Each species is categorized into three freshness
levels based on storage duration: Highly Fresh, Fresh, and Not Fresh. The dataset is
designed to simulate the gradual decline in freshness over six days of storage.
The eight supported species in the dataset are:

– Chanos chanos
– Johnius trachycephalus
– Nibea albiflora
– Rastrelliger faughni
– Upeneus moluccensis
– Eleutheronema tetradactylum
– Oreochromis mossambicus
– Oreochromis niloticus

Originally, the dataset (See Figures 4.1 and 4.2) includes 24 classes, each representing a
unique combination of species and freshness level. For example, classes such as “Chanos
chanos - Highly Fresh” or “Oreochromis niloticus - Not Fresh”. However, in this work,
we restructure the dataset into a simpler 3-class problem: Highly Fresh, Fresh, and Not
Fresh, aggregating all species into these categories. This allows the model to focus on
freshness estimation rather than species recognition [21, 24].

4.2 Class Structure and Balancing

To enhance the model’s generalization and reduce class bias, we preprocess the dataset
to ensure that each of the three target classes contains an equal number of images in

44



Figure 4.1: dataset [23]

Figure 4.2: dataset structure [23]

both training and testing sets. This balancing strategy helps avoid skewed predictions
and overfitting toward the majority class [25].
The images were split into:

– Training Set: Balanced across the three freshness classes.
– Testing Set: Balanced similarly to evaluate the model performance fairly.

The resulting dataset is structured as follows:

– Image Size: Resized to 299x299 pixels to match EfficientNetB3 input [26].
– Format: JPEG and PNG formats.
– Preprocessing: Images were rescaled by 1/255 and augmented using rotation,

flipping, zoom, shear, and brightness adjustments [27].

Balancing was achieved programmatically by limiting each class to the number of im-
ages available in the smallest category. This ensured the training process was not
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biased toward any single freshness class.
A sample of the balanced dataset structure:

– Highly Fresh: 1043 images (train), 264 images (test)
– Fresh: 1043 images (train), 264 images (test)
– Not Fresh: 1043 images (train), 264 images (test)

This balancing led to more stable training and improved evaluation consistency across
all classes.

4.3 Image Preprocessing and Augmentation

To ensure optimal model performance and generalization, a series of preprocessing steps
and data augmentation techniques were applied to the images in the Freshness of Fish
Eyes (FFE) dataset. These steps are crucial for standardizing the data input pipeline
and increasing the variability of the training samples without collecting additional data,
which is especially important in computer vision tasks with limited datasets [27, 28].
Figure 4.3 is a code screenshots

Figure 4.3: data augmentation
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Image Preprocessing

All images were first resized to a fixed resolution of 299 × 299 pixels using bilinear
interpolation to match the input size required by the EfficientNetB3 convolutional
neural network [26]. This resizing ensures consistent input dimensions and preserves
the spatial structure of the fish eye features that are critical for freshness classification.
Following resizing, all pixel values were normalized to the range [0, 1] by dividing each
pixel intensity by 255. This normalization step accelerates convergence during training
and helps prevent issues related to exploding or vanishing gradients. Normalized inputs
also ensure compatibility with pre-trained weights from ImageNet, which expect input
images to be scaled appropriately.
The class labels corresponding to each image were encoded using one-hot encoding,
which transforms each label into a binary vector. This format is required for train-
ing with the categorical cross-entropy loss function used in multi-class classification
problems. Figure 4.4 represents some of those augmentation techniques.

Figure 4.4: data augmentation techniques

Data Augmentation

To reduce overfitting and improve the model’s generalization to unseen data, a set of
data augmentation transformations was applied dynamically to the training dataset
using the ImageDataGenerator utility from TensorFlow Keras. These augmentations
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introduce artificial variability by modifying the original images while preserving their
semantic content [27, 28].
The following augmentation techniques were employed:

– Rotation: Random rotations within a range of ±20◦ simulate minor orientation
changes that may occur during fish image capture, helping the model become
invariant to angular variations.

– Width and Height Shifting: Horizontal and vertical translations of up to 15%
of the image dimensions were applied to simulate off-center captures and shifts in
the position of the fish eye within the frame.

– Shear Transformations: Shearing with a range up to 10% introduces controlled
distortion in the images, mimicking real-world perspective transformations.

– Zooming: Random zooming within a range of 15% was applied to emulate vari-
ability in camera distance and field-of-view.

– Brightness Adjustments: A brightness range was used to simulate varying
lighting conditions during image acquisition, allowing the model to learn more
robust representations under different illumination levels.

– Horizontal Flipping: Random horizontal flips were enabled to prevent the
model from associating directional eye features (left vs. right) with freshness
levels, as such features are irrelevant in this context.

– Fill Mode: Newly introduced pixels as a result of transformation were filled
using the nearest strategy, which maintains edge consistency without introducing
artifacts.

These augmentations were applied only to the training data during the fitting process.
The validation and test datasets were strictly used in their original, non-augmented
form and were only rescaled using the same normalization applied to the training data.
This ensures a fair evaluation of the model’s performance on unaltered and unseen
examples.
By employing these augmentation techniques, the training dataset was effectively ex-
panded in terms of variation, enabling the model to learn more invariant and gen-
eral features across different classes of fish and their respective freshness levels. This
strategy contributed significantly to reducing the gap between training and validation
accuracy and helped mitigate overfitting.

4.4 Model Architecture (EfficientNetB3)

The core of the proposed fish freshness classification system is built on the Efficient-
NetB3 architecture, a state-of-the-art convolutional neural network (CNN) that achieves
high accuracy with fewer parameters and faster training compared to traditional mod-
els such as ResNet and VGG. EfficientNet was introduced by [26] and is known for its
compound scaling strategy, which uniformly scales depth, width, and resolution of the
network to balance efficiency and performance.

48



Rationale for Choosing EfficientNetB3

EfficientNetB3, among the EfficientNet family, offers a suitable trade-off between model
complexity and accuracy, especially when working with moderate-sized datasets like
FFE. While smaller variants (e.g., B0, B1) are faster, B3 was selected due to its en-
hanced capacity for learning complex visual patterns, which are essential for distin-
guishing subtle differences in fish eye features across freshness levels [29, 30].

Architecture Overview

EfficientNetB3 is composed of mobile inverted bottleneck convolution (MBConv) blocks
(See Figure 4.5), batch normalization layers, and squeeze-and-excitation modules that
improve feature recalibration. It is pretrained on the ImageNet dataset, which provides
the network with generalized feature extraction capabilities, significantly accelerating
convergence during transfer learning [10, 2].
In this project, the EfficientNetB3 model was used as the backbone with its top (fully
connected) classification layers removed (include_top=False) to allow for a custom
head tailored to the FFE classification task.

Figure 4.5: EfficientNetB3 base [31]

Custom Classification Head

On top of the base model, a custom classification head (See Figure 4.6)was added to
perform the final freshness prediction. The head consisted of the following layers:

Figure 4.6: Classififcation Head
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– Global Average Pooling 2D (GAP): This layer reduces the spatial dimensions
of the feature maps into a single feature vector by taking the average across each
feature map. This reduces overfitting and improves interpretability by maintaining
spatial robustness [32].

– Batch Normalization: Introduced after the pooling layer to stabilize and ac-
celerate training by normalizing the activations of the previous layer.

– Dense Layer (512 units, ReLU): A fully connected layer with 512 neurons
and ReLU activation was used to capture non-linear combinations of features
extracted by the base model.

– Dropout (rate = 0.4): Applied to prevent overfitting by randomly deactivating
40% of neurons during training [2].

– Dense Layer (256 units, ReLU): A second dense layer with 256 neurons further
refines the feature space.

– Dropout (rate = 0.2): An additional dropout layer with a 20% rate to improve
regularization.

– Output Layer (3 units, Softmax): The final output layer uses the softmax
activation function to produce a probability distribution over the three freshness
categories: Highly Fresh, Fresh, and Not Fresh.

Training Strategy

The training was divided into two distinct phases, following a common transfer learning
paradigm used with pretrained convolutional neural networks such as EfficientNet [26]:

– Phase 1: Feature Extraction
Represented in Figure 4.7 the EfficientNetB3 base was frozen, allowing only the
custom classification head to be trained. This phase focuses on training the new
layers to adapt pre-trained features from ImageNet to the specific classification
task [10].

Figure 4.7: Feature Extraction
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– Phase 2: Fine-Tuning
Represented in Figure 4.8, the top 100 layers of the EfficientNetB3 backbone were
unfrozen, and the model was retrained with a lower learning rate. Fine-tuning
allows the network to adapt high-level representations more precisely to the fish
freshness estimation task, a strategy shown to improve performance on domain-
specific datasets [2].

Figure 4.8: Fine-tuning

Model Compilation and Optimization

The model was compiled using the Adam optimizer, which is widely used in deep learn-
ing for its adaptive learning rate and efficient convergence properties [2]. A learning
rate of 0.001 was applied in both phases. The categorical cross-entropy loss function
was selected as it is well-suited for multi-class classification tasks with softmax output.
To further optimize training and mitigate overfitting, the following callbacks were em-
ployed:

– ReduceLROnPlateau: Dynamically reduces the learning rate when validation loss
plateaus, encouraging the optimizer to fine-tune weights more carefully in later
epochs.

– EarlyStopping: Stops training if the validation accuracy does not improve over
a defined patience threshold, helping avoid unnecessary epochs and overfitting.

This two-phase strategy, combined with strong regularization and adaptive learning
rate scheduling, enabled the model to generalize well on unseen data. The final archi-
tecture achieved over 81.06% test accuracy with minimal signs of overfitting.

4.5 Transfer Learning and Model Head

Transfer learning has become a fundamental technique in modern deep learning appli-
cations, particularly in computer vision tasks where labeled data is limited. Instead
of training a model from scratch, a pre-trained network is used as a feature extractor,
leveraging prior knowledge learned from a large benchmark dataset such as ImageNet
[10].
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Figure 4.9: Classification report

Figure 4.9 represent a detailed report of the model results.
This approach significantly reduces training time and improves generalization, espe-
cially when applied to smaller or domain-specific datasets like the Freshness of Fish
Eyes (FFE) dataset.
In this project, the EfficientNetB3 model [26] was used as the base feature extractor.
The base layers of EfficientNetB3 were loaded with pre-trained ImageNet weights and
used in two phases:

– During Phase 1 (feature extraction), all base layers were frozen to prevent up-
dates and the custom classification head was trained to adapt high-level features
to the fish freshness domain.

– In Phase 2 (fine-tuning), the top 100 layers of the EfficientNetB3 model were
unfrozen to allow gradient updates, enabling the model to fine-tune more abstract
features for improved task-specific performance.

Custom Model Head

To adapt EfficientNetB3 for the 3-class freshness classification problem, a custom head
was appended to the base network. The head consists of:

– A Global Average Pooling 2D (GAP) layer, which replaces fully connected
layers by aggregating spatial information and reducing the number of trainable
parameters, thereby lowering overfitting risk [33].

– A Batch Normalization layer to stabilize and accelerate learning by normalizing
intermediate outputs.

– A Dense layer with 512 ReLU units, followed by a Dropout layer with a
rate of 0.4 for regularization.

– A second Dense layer with 256 ReLU units and a subsequent Dropout layer
with a rate of 0.2.

– A final Dense output layer with 3 neurons and softmax activation to produce
probabilities for the freshness categories: Highly Fresh, Fresh, and Not Fresh.
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This head was designed to maximize classification performance while controlling for
overfitting. The combination of GAP, dropout, and batch normalization creates a
lightweight yet expressive structure suitable for small to medium-sized datasets.
Transfer learning with a custom head thus allowed the model to leverage powerful pre-
trained features while adapting flexibly to the specific task of fish freshness estimation
based on eye images.

4.6 Compilation and Loss Function

After building the model architecture using EfficientNetB3 and a custom classification
head, the model was compiled to prepare it for training. Compilation defines how
the model updates its weights and how performance is measured during training and
validation.

Optimizer

The model was compiled using the Adam optimizer [34], which is widely used in
deep learning due to its adaptive learning rate and momentum-based updates. Adam
combines the advantages of both RMSProp and stochastic gradient descent with mo-
mentum, making it well-suited for noisy datasets and sparse gradients. A learning rate
of 0.001 was used during both feature extraction and fine-tuning phases, offering a
balance between convergence speed and stability.

Loss Function

Since the freshness classification task is a multi-class classification problem, the
appropriate loss function used was Categorical Cross-Entropy:

L = −
N∑

i=1
yi log(ŷi)

where yi is the true label (one-hot encoded), and ŷi is the predicted probability for class
i. This function measures the dissimilarity between the predicted distribution and the
actual class labels, penalizing incorrect predictions more heavily.
Categorical cross-entropy is well-suited for softmax-based outputs where the goal is to
classify each input into one of three mutually exclusive classes: Highly Fresh, Fresh, or
Not Fresh.

Evaluation Metrics

The model was trained with accuracy as the primary evaluation metric. This metric
provides an intuitive measure of the proportion of correctly classified instances across
the validation and test sets. Additional metrics such as precision, recall, F1-score, and
ROC-AUC were also computed during the evaluation phase to provide a more detailed
understanding of model performance.
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Callbacks

To optimize training and avoid overfitting, the following callbacks were used:

– EarlyStopping: Monitors validation accuracy and stops training if no improve-
ment is seen after a predefined number of epochs, restoring the best weights.

– ReduceLROnPlateau: Automatically reduces the learning rate when validation
loss plateaus, allowing the optimizer to escape local minima and converge better.

– ModelCheckpoint: Saves the best performing model based on validation accu-
racy during training.

These strategies collectively ensured that the model converged efficiently while main-
taining strong generalization on unseen data.
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CHAPTER 5

TRAINING AND EVALUATION

5.1 Two-Phase Training Strategy

To effectively adapt the EfficientNetB3 model to the fish freshness classification task,
a two-phase training strategy was implemented. This strategy capitalizes on the
strengths of transfer learning while minimizing overfitting, especially important when
working with limited datasets such as the Freshness of Fish Eyes (FFE) dataset.

Overview of Transfer Learning

Transfer learning allows a model trained on a large, general-purpose dataset (such
as ImageNet) to be adapted to a new, specific task with fewer examples. In deep
learning, this usually involves reusing the convolutional base of a pre-trained model as
a feature extractor and adding a custom classification head on top [2]. By freezing and
later unfreezing different layers of the pre-trained model, the system can be trained
efficiently in a staged manner. This is particularly advantageous in domains like food
quality assessment where annotated data is limited.

Phase 1: Feature Extraction

During the first phase of training, the EfficientNetB3 backbone was used strictly as
a fixed feature extractor. All layers of the base model were frozen except the batch
normalization layers, which were kept trainable to maintain proper activation statistics
on the new data distribution. Only the newly added classification head was trained in
this phase.
The objective of this phase is to enable the model to learn how to map high-level
features extracted from the pre-trained EfficientNetB3 to the specific classes in the fish
freshness dataset. This phase was trained for 30 epochs using the Adam optimizer
with a learning rate of 0.001. The training was monitored using validation accuracy,
and callbacks such as ReduceLROnPlateau and EarlyStopping were used to improve
efficiency and prevent overfitting.
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Phase 2: Fine-Tuning

Once the custom classification head had been trained and stabilized, the model entered
the second phase: fine-tuning. In this phase, the top 100 layers of the EfficientNetB3
backbone were unfrozen, allowing the model to adjust the weights of higher-level con-
volutional layers based on the target domain.
Fine-tuning allows the model to improve its feature representations specifically for fish
eye imagery. This is particularly important because fish eyes exhibit subtle textural and
structural changes across freshness levels, which may not be adequately captured by
features learned from natural images. A smaller learning rate (0.001) was maintained
during this phase to avoid catastrophic forgetting of the pre-trained weights and to
ensure stable updates to the model parameters [26].

Callbacks and Optimization Control

Both training phases employed key training control mechanisms:

– EarlyStopping: Halts training if the validation accuracy does not improve for
20 consecutive epochs, thereby reducing unnecessary computation and overfitting.

– ReduceLROnPlateau: Dynamically reduces the learning rate when the valida-
tion loss plateaus, helping the model escape shallow minima and continue opti-
mizing effectively.

– ModelCheckpoint: Stores the best-performing model weights based on valida-
tion accuracy, ensuring that only the most optimal model is used for evaluation.

Benefits of the Two-Phase Strategy

This dual-phase training method provides a robust approach to model adaptation
by separating the learning of task-specific patterns from the fine-tuning of domain-
invariant feature extractors. It helps preserve the generalization capability of the pre-
trained model while enhancing its focus on the specific visual cues relevant to fish
freshness—such as eye opacity, color change, and convexity.
Through this method, the model achieved over 81% accuracy on a balanced test set,
with minimal overfitting between training and validation accuracy. These results af-
firm the efficacy of using staged training in low-data, high-variance computer vision
applications like food freshness detection [2, 26].

5.2 Optimizer, Learning Rate, and Callbacks

The choice of optimization algorithm, learning rate schedule, and training callbacks
are crucial elements in deep learning workflows, directly influencing convergence speed,
model generalization, and training stability. For the fish freshness classification task,
specific attention was given to these hyperparameters to balance learning efficiency and
overfitting control.
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Optimizer

The Adam optimizer [34] was selected for both training phases due to its adaptive
learning rate capabilities and proven effectiveness in image classification tasks. Adam
combines the advantages of both AdaGrad and RMSProp and is well-suited for prob-
lems with sparse gradients and noisy data. It computes individual adaptive learning
rates for different parameters from estimates of first and second moments of the gradi-
ents.
Adam’s default parameters were used:

– Learning rate: 0.001
– β1 = 0.9
– β2 = 0.999
– ϵ = 10−7

These values offered a good trade-off between fast convergence and stable updates
during both feature extraction and fine-tuning.

Learning Rate Strategy

While the learning rate remained fixed at 0.001 in both training phases, dynamic learn-
ing rate adjustment was achieved using the ReduceLROnPlateau callback. This strategy
reduces the learning rate by a factor (typically 0.5) when the validation loss does not
improve after a specified number of epochs (patience).
This learning rate scheduling method helps the model escape local minima and ensures
finer weight updates in later stages of training, especially during fine-tuning of the
unfrozen layers in Phase 2.

Training Callbacks

To improve model robustness and prevent overfitting, the following Keras callbacks
were integrated:

– ReduceLROnPlateau: Monitors the validation loss and reduces the learning
rate when the performance plateaus. This adaptive mechanism allows the opti-
mizer to slow down as it approaches convergence, enhancing final accuracy and
stability.

– EarlyStopping: Monitors the validation accuracy and stops training if there
is no improvement for 20 consecutive epochs. This avoids unnecessary training
epochs, conserves compute resources, and prevents overfitting on the validation
set.

– ModelCheckpoint: Saves the best model weights based on validation accuracy.
This ensures that the final model used for testing and deployment is the one that
performed best during training.
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These callbacks were critical for managing the training dynamics, especially when train-
ing deep models like EfficientNetB3 on moderately sized datasets. They provided both
control and flexibility by adapting the training process based on model performance
indicators.
Overall, the optimization strategy played a key role in achieving the final model’s gen-
eralization ability, contributing to a test accuracy of over 81% with minimal overfitting.

5.3 Training & Validation Performance

To assess the learning behavior of the model, both training and validation accuracy
and loss were tracked across epochs for each training phase. The goal was to achieve
high validation performance with minimal overfitting, ensuring the model generalizes
well to unseen data.

Phase 1: Feature Extraction

During the initial phase, only the custom classification head was trained, while the
EfficientNetB3 backbone remained frozen. This allowed the network to adapt the
high-level ImageNet features to the specific fish freshness task.
The model quickly learned to identify relevant freshness features, achieving over 70%
validation accuracy within the first few epochs. Throughout training, the validation
loss steadily decreased, suggesting effective learning with minimal signs of overfitting.
Additionally, the use of EarlyStopping and ReduceLROnPlateau helped ensure smooth
convergence and prevented unnecessary training cycles by dynamically adjusting the
learning process.

Phase 2: Fine-Tuning

In the second phase, the top 100 layers of the EfficientNetB3 backbone were unfrozen
and trained with a lower learning rate. This fine-tuning enabled the model to adapt
mid- and high-level convolutional filters to the fish eye image domain.
A consistent improvement in both training and validation accuracy was observed dur-
ing model development, with final values exceeding 98% and 82%, respectively. The
validation loss curve closely mirrored the training loss, indicating strong generalization
capabilities. Moreover, the narrow performance gap between training and validation
results suggests that the model exhibited minimal overfitting throughout the training
process.

5.4 Confusion Matrix & ROC Curves

In order to go beyond aggregate metrics such as accuracy and loss, this section presents
a deeper analysis of the model’s classification behavior using two key evaluation tools:
the confusion matrix and Receiver Operating Characteristic (ROC) curves.
These visualization tools help identify class-specific strengths and weaknesses, as well
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as the model’s ability to distinguish between the freshness categories: Highly Fresh,
Fresh, and Not Fresh.

Confusion Matrix Analysis

The confusion matrix provides a compact summary of classification outcomes by com-
paring the actual class labels with the predicted labels. It is especially useful in multi-
class problems to identify the specific types of errors the model is making.
In our case, the confusion matrix was generated using the predictions from the final
model on the test set. The resulting matrix indicates the following Figure 5.1:

Figure 5.1: Confusion matrix

The confusion matrix reveals strong diagonal dominance, indicating that the majority
of samples in each class were correctly classified. Most misclassifications occurred
between the Fresh and Not Fresh categories. This overlap is biologically plausible, as
the visual differences in fish eye appearance between day 4 and day 5 can be quite subtle
and challenging to discern, even for human experts. Notably, the Highly Fresh class
achieved the highest precision and recall values, suggesting that the model is especially
effective at detecting clear visual indicators associated with peak freshness.
The confusion matrix was computed using the ‘confusion_matrix‘ function from scikit-learn,
and plotted using the seaborn library to provide a heatmap representation, aiding in-
terpretability.

ROC Curves and AUC

To further evaluate the classifier’s ability to discriminate between freshness levels, we
employed Receiver Operating Characteristic (ROC) curves and calculated the Area
Under the Curve (AUC) for each class. ROC analysis is typically used in binary
classification, but it can be extended to multi-class problems using the one-vs-rest
approach. See Figure 5.2.
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Figure 5.2: ROC curves

The following steps were followed:

1. The model generated class probabilities for each sample in the test set using the
softmax output layer.

2. True labels were one-hot encoded to match the probability vectors.
3. For each class, an individual ROC curve was plotted by treating that class as

positive and the rest as negative.

The ROC curves demonstrated the following: The ROC analysis further supports the
model’s classification performance. All three classes achieved AUC scores above 0.90,
demonstrating strong separability. The curve corresponding to the Highly Fresh class
exhibited the steepest rise, which aligns with previous findings from the confusion
matrix, confirming that this class was the easiest to classify. In contrast, the Fresh
and Not Fresh curves showed moderate overlap, reflecting the biological reality that
the distinction between these two classes can be subtle and not always clearly defined.
The AUC metric is especially important in cases where class imbalance or threshold
sensitivity could affect overall accuracy. While our dataset was balanced, using ROC
curves helped confirm that the classifier maintains consistent performance across all
decision thresholds and is not biased toward any one class.

Implications

The confusion matrix and ROC curve analysis complement the overall accuracy metric
and provide valuable class-wise performance insights. In the context of fish freshness
classification: These evaluation metrics reinforce the validity of the trained model as a
reliable tool for fish freshness estimation. They also support its practical deployment in
real-world scenarios, such as retail settings or fisheries, where consistent and explainable
predictions across all freshness levels are essential. Furthermore, the strong ROC-
AUC results indicate that the model holds potential for further optimization—such as
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threshold tuning—for specialized use cases like early spoilage detection or high-precision
quality control environments.
These findings indicate that the classifier is robust and well-suited for practical deploy-
ment, with balanced performance and interpretability across all categories.

5.5 Grad-CAM Visualization

To enhance the interpretability of the trained deep learning model and gain insights
into its decision-making process, we implemented Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) see Figure 5.3. Grad-CAM is a widely-used technique
that enables visual explanations for predictions made by convolutional neural networks
(CNNs). It highlights the regions in an input image that most strongly influence the
model’s predicted class.

Motivation for Explainability

Although convolutional neural networks have demonstrated remarkable accuracy in im-
age classification tasks, their black-box nature often limits trust in high-stakes domains
such as healthcare, food safety, and quality control. In our project, it is important to
ensure that the model is making predictions based on relevant anatomical features
of the fish eye, such as cloudiness, convexity, and brightness—visual cues known to
correlate with freshness degradation [24, 21].
Explainable AI (XAI) techniques like Grad-CAM allow us to verify whether the model
is genuinely focusing on biologically meaningful features or if it is being misled by irrele-
vant background noise, shadows, or labeling artifacts. This transparency is particularly
essential in real-world deployments where user trust, auditability, and debugging are
required.

Technical Approach

Grad-CAM works by computing the gradient of the score for a target class (e.g., Not
Fresh) with respect to the feature maps of a selected convolutional layer. These gra-
dients are globally averaged to obtain importance weights, which are used to perform
a weighted combination of the feature maps. This results in a heatmap that localizes
the most influential regions in the image.
The steps for generating a Grad-CAM heatmap are as follows:

1. Forward Pass: The input image is passed through the model to compute the
class prediction and extract intermediate activations from the last convolutional
layer.

2. Gradient Computation: Using TensorFlow’s automatic differentiation via GradientTape,
the gradients of the predicted class score are computed with respect to the feature
maps.

3. Global Average Pooling: The gradients are globally averaged to compute im-
portance weights for each feature map.
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4. Weighted Feature Map Combination: Each channel of the feature maps is
weighted and combined using the computed importance scores.

5. ReLU Activation: A ReLU operation is applied to the combined map to sup-
press negative values, resulting in the final class activation map (heatmap).

6. Overlay: The heatmap is normalized, resized, and overlaid onto the original
image using OpenCV to produce a composite visualization.

For our implementation, the layer block7a_project_conv from EfficientNetB3 was
selected as the final convolutional layer for Grad-CAM extraction. This layer was
chosen because it provides semantically rich features with adequate spatial resolution
for effective localization.

Visualization Results and Insights

Figure 5.3: Grad-cam

Figure presents sample Grad-CAM visualizations obtained from test images across the
three freshness categories. The red-to-yellow areas indicate regions of high importance
to the model’s decision. As expected, the visual focus of the model aligns with the
central regions of the fish eye, where changes in texture, clarity, and shape are visually
observable over time.
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In Highly Fresh samples, the model predominantly attends to clear and convex eye
areas. In contrast, in Not Fresh samples, attention shifts toward flattened and clouded
regions. These results suggest that the model is learning features consistent with expert
assessments in fish freshness evaluation [22].

Impact and Practical Applications

The successful use of Grad-CAM in this project provides several benefits:
Grad-CAM offers several valuable benefits within the context of model evaluation and
deployment. From an interpretability standpoint, it enhances user trust by provid-
ing visual explanations that clarify the model’s decision-making process. As a debug-
ging tool, it enables researchers to identify failure cases and detect when the model
focuses on irrelevant regions, guiding improvements in dataset curation and augmenta-
tion strategies. In terms of model validation, Grad-CAM confirms that the network
relies on relevant anatomical features rather than artifacts or dataset biases. Finally,
for deployment support, especially in production environments like consumer-facing
mobile apps, Grad-CAM can generate intuitive heatmap overlays that offer real-time,
visual feedback to end users.
Thus, Grad-CAM is a valuable component in the development and evaluation of inter-
pretable AI systems for food quality assessment.

5.6 Final Test Performance

The final evaluation of the model was conducted using a completely independent and
balanced test set containing 795 images, divided equally across the three freshness
classes: Highly Fresh, Fresh, and Not Fresh, with 264 images per class. This ensures
that the assessment of model generalization is unbiased and reflects its performance in
real-world scenarios.
Our final EfficientNetB3-based model, trained in two phases with carefully tuned
dropout, augmentation, and optimizer settings, achieved a test accuracy of 81.06%.
This result reflects the model’s ability to correctly classify freshness levels of fish based
on eye features, despite the inherent visual similarities between categories.

Evaluation Methodology

The model’s performance was evaluated using the model.evaluate() method, which
computes the categorical cross-entropy loss and classification accuracy over the entire
test set. Predictions were generated using model.predict(), followed by selecting the
most probable class via argmax().
Beyond accuracy, further analysis included:

– Classification Report: Precision, recall, and F1-score metrics were calculated
for each freshness class to assess class-wise performance.

– Confusion Matrix: A heatmap was used to visualize confusion between classes,
identifying specific areas where the model struggled.
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– ROC Curves: Receiver Operating Characteristic (ROC) curves and Area Under
Curve (AUC) scores were computed to measure the discriminative ability of the
classifier across all classes [35].

– Grad-CAM: Gradient-weighted Class Activation Maps (Grad-CAM) were gen-
erated to interpret the visual focus of the model, highlighting the eye regions used
for decision-making [18].

Observations

The model demonstrated strong generalization capabilities, as evidenced by the mini-
mal gap between validation accuracy (83.16%) and test accuracy (81.06%), which also
indicates limited overfitting. Most misclassifications occurred between visually similar
categories—particularly Fresh and Not Fresh—a distinction that even trained experts
often find challenging. Furthermore, the model achieved consistently high AUC scores
across all three classes, suggesting reliable classification performance under varying
decision thresholds.

Comparison with Prior Work

To evaluate the effectiveness of our proposed model, we compared its performance with
that of the study by Yildiz [20], which also used the FFE dataset. The table below
summarizes key characteristics and outcomes of both studies:
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Table 5.1: Comparison of Proposed Model with Yildiz study

Criteria Study by Yildiz [20] This Study (2025)
Dataset FFE (4392 images)

24 classes (species +
freshness) merged into 3
freshness levels

FFE (4392 images)
Converted into a 3-class
balanced dataset (Highly
Fresh, Fresh, Not Fresh)

Model Type Deep feature extractors
(VGG19, SqueezeNet)
+ ML classifiers (ANN,
SVM, kNN, LR, RF)

End-to-end CNN: Effi-
cientNetB3 with custom
dense layers

Input Resolution Not specified explicitly 299×299 pixels (Effi-
cientNetB3 standard)

Best Performing
Pipeline

VGG19 + ANN EfficientNetB3 with cus-
tom classification head

Training Strat-
egy

ML after deep feature
extraction, 10-fold cross-
validation

Two-phase training (fea-
ture extraction then fine-
tuning), early stopping,
learning rate scheduling

Augmentation Mirroring only Rotation, shift, zoom,
shear, brightness, flip-
ping

Evaluation Met-
rics

Accuracy (77.3%), Preci-
sion, Recall, F1-score

Accuracy (81.06%), Pre-
cision, Recall, F1-score,
ROC curves, Confusion
Matrix, Grad-CAM

Explainability Not discussed Included Grad-CAM
visualizations for inter-
pretability

Test Setup 10-fold CV Separate test set (264 im-
ages per class, balanced)

Deployment Android mobile app Web deployment via
Streamlit

As seen in Table 5.1, model not only improves classification accuracy from 77.3% to
81.06%, but also provides a more robust and interpretable pipeline with dedicated
evaluation tools such as Grad-CAM and ROC curves. This demonstrates a meaningful
improvement over existing work using the same dataset.

Conclusion

The final test results validate the robustness of the model architecture and training
strategy. By leveraging a combination of advanced CNN architecture, strong augmen-
tation, and balanced training data, the model successfully classifies freshness with over
81% accuracy on unseen data. This supports the feasibility of deploying such systems
in web or mobile applications for automated freshness estimation of fish using simple
eye photographs.
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CHAPTER 6

APPLICATION AND CONCLUSION

6.1 Streamlit Web App Deployment

In order to demonstrate the practical utility of the proposed fish freshness classification
model, the system was deployed as an interactive web application using the Streamlit
framework. Streamlit is a modern Python-based tool that enables rapid development
of web interfaces for machine learning models without requiring extensive frontend
expertise. Its simplicity and performance make it ideal for research prototypes and
real-time inference systems in computer vision applications [36]. (Figures 6.1 6.2)

Overview of the Web Application

The primary goal of the application is to provide a lightweight and accessible platform
where users—whether consumers, fisheries, or retailers—can upload an image of a fish
eye and instantly receive an AI-powered freshness prediction. The application supports
both drag-and-drop file uploads and real-time webcam capture, with minimal latency
in generating results.
The application classifies each uploaded image into one of the following three categories:

– Highly Fresh
– Fresh
– Not Fresh

This streamlined classification scheme, adapted from the original 24-class structure
in the FFE dataset [20], prioritizes usability and actionable output over taxonomic
granularity.

Deployment Pipeline

The deployment followed a systematic pipeline comprising several key stages:
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Figure 6.1: Desktop view

Figure 6.2: Mobile view

1. Model Serialization: The final trained EfficientNetB3-based model was saved
using TensorFlow’s model.save() method. The resulting .keras file includes the
complete architecture, weights, and training configuration.

2. Model Loading and Preprocessing: In the Streamlit backend, the model
is loaded via tensorflow.keras.models.load_model(). Uploaded images are
resized to 299 × 299 pixels and normalized to match the training input pipeline.
This ensures consistent performance regardless of the source image dimensions or
lighting.

3. User Interface (UI): Streamlit’s native components were used to create a clean
and intuitive UI. Users can upload an image file or capture one via webcam. Once
submitted, the model outputs a class prediction and confidence score.

4. Explainability Integration: To enhance transparency, the application gener-
ates a Grad-CAM heatmap overlaying the original image. This shows which
regions of the fish eye most influenced the model’s decision, in line with explain-
ability practices in deep learning [18].
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Application Features

The web app was designed with versatility, accessibility, and responsiveness in mind.
The key features include:
The deployed application offers several practical features that enhance usability and
transparency. It ensures cross-device compatibility, functioning seamlessly across
desktops, tablets, and smartphones. Prediction speed is highly efficient, with infer-
ence times typically under one second per image on standard CPU hardware. For better
user understanding, the app displays not only the predicted freshness class but also the
confidence scores using softmax probabilities for all three categories. Each prediction
is further supported by a Grad-CAM visualization, offering visual explanations to
improve interpretability. Finally, the system is built with minimal dependencies, re-
lying entirely on open-source tools such as TensorFlow, OpenCV, and Streamlit, which
makes it easy to maintain and deploy.
To enhance user interaction and deliver contextual information alongside the classifica-
tion results, a smart freshness report feature was integrated into the application using
the OpenAI GPT API [37] (See Figure 6.3). After the model classifies the uploaded
fish eye image into one of the three freshness categories—Highly Fresh, Fresh, or Not
Fresh—the system automatically generates a short, human-readable report. This report
adopts the style of a professional seafood inspector, providing tailored recommenda-
tions based on the predicted freshness level. For example, if the result is Not Fresh, the
user is warned and advised to discard the fish. If the result is Fresh or Highly Fresh,
the report highlights positive freshness indicators and offers storage guidance. This
integration enhances the system’s explainability, usability, and real-world applicability
by translating AI outputs into practical, trustworthy insights.

Figure 6.3: Smart fish freshness rapport
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Potential Use Cases

– Retailers and Wholesalers: Quick verification of stock quality during trans-
portation or at point of sale.

– Consumers: Informed purchase decisions at markets or fishmongers using mobile
phone cameras.

– Academic Demonstration: Teaching tool for courses in AI, computer vision,
and food quality assurance.

– Fishery Quality Control: Non-destructive, real-time freshness monitoring di-
rectly at the harvesting site.

Conclusion

The successful deployment of the model into a web application environment underscores
its applicability beyond research settings. By combining a high-accuracy deep learning
model with a transparent, interactive interface, this solution offers a practical tool for
real-time fish freshness classification. Future work could extend this prototype into
a full production-ready application with species detection, video input, and backend
optimization. (See Figures 6.4, 6.5, and 6.6)

Figure 6.4: Fresh result

Figure 6.5: Highly fresh result
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Figure 6.6: Not fresh result

Testing on External Oreochromis niloticus Dataset

To further evaluate the model’s generalization capability, an external dataset containing
images of Oreochromis niloticus (Tilapia) stored on ice was used for qualitative testing.
This dataset, available on Mendeley Data [38] (Figure 6.7, and 6.8), provides real-world
images of fish captured under different storage durations, reflecting authentic freshness
stages.

Figure 6.7: Dataset view

According to the documented timeline, the eyes of Tilapia display clear morphological
changes across storage days:

– Day 1–2: Highly Fresh — clear eyes, red gills, firm flesh, clean smell
– Day 3–4: Fresh — slightly dull eyes, flesh still firm, slight fishy odor
– Day 5–6: Not Fresh — cloudy eyes, soft flesh, pale/brown gills, sour odor

To test generalization, three representative images were selected from:

– Day 1 (Highly Fresh): Predicted as Highly Fresh with 100% confidence
– Day 4 (Fresh): Predicted as Fresh with 100% confidence
– Day 6 (Not Fresh): Predicted as Not Fresh with 100% confidence
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Figure 6.8: Image view

Figure 6.9: Streamlit prediction results

These results (See Figure 6.9) demonstrate the model’s robustness and strong ability
to generalize across unseen data. Despite the fish species and shooting conditions being
external to the training distribution, the predictions remained accurate and confident,
indicating the effectiveness of the model architecture and training strategy.

6.2 Application Workflow and Predictions

The end-to-end workflow of the proposed fish freshness prediction system integrates im-
age preprocessing, model inference, and result visualization into a user-friendly Stream-
lit web interface. This pipeline is designed to offer both accessibility and technical rigor,
making it suitable for real-world adoption by consumers, vendors, and fisheries.
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User Interaction Flow

The prediction workflow is structured as follows:

1. Image Input: Users are prompted to either upload an image from their local
device or capture one using a webcam. The input image is expected to focus on
the eye of a fish, as freshness indicators are primarily inferred from visual features
in this region [20].

2. Preprocessing: Upon image submission, the backend resizes the input to 299 ×
299 pixels and normalizes pixel values to the [0, 1] range. This mirrors the prepro-
cessing pipeline used during training, ensuring consistency in input representation
[27].

3. Prediction: The preprocessed image is passed through the trained EfficientNetB3-
based model. The model outputs a probability distribution over the three pre-
defined classes: Highly Fresh, Fresh, and Not Fresh. The class with the highest
probability is selected as the final prediction.

4. Grad-CAM Visualization: To enhance interpretability, the application over-
lays a Grad-CAM heatmap on the original image. This highlights the regions that
most influenced the model’s decision, typically focusing around the iris, sclera, and
corneal clarity [18].

5. Result Display: The user is presented with the predicted freshness label, the as-
sociated confidence score, and the Grad-CAM-enhanced image. This multimodal
output format facilitates informed interpretation and increases user trust in the
system’s decisions.

Prediction Output Structure

The prediction module produces results in a structured and intuitive format:

– Predicted Freshness: Clearly states whether the fish eye is classified as Highly
Fresh, Fresh, or Not Fresh.

– Confidence Score: A percentage value indicating the model’s confidence in its
prediction.

– Class Probabilities: The full softmax vector showing confidence across all
classes, allowing advanced users to interpret the model’s certainty and ambiguity.

– Visual Explanation: Grad-CAM visualization highlights decision-critical fea-
tures, increasing transparency and aligning with best practices in explainable AI
(XAI) [18].

Robustness and Error Handling

To ensure a seamless user experience, the application incorporates several safeguards:
To ensure robustness and a smooth user experience, the application incorporates several
key safeguards. Input validation is performed to verify image format, resolution,
and aspect ratio, thereby preventing incompatible inputs from causing model errors.
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Inference time monitoring is also implemented, with prediction durations logged
and optimized to remain below one second on most CPU configurations. Additionally,
the system includes a fallback mechanism that prompts users to upload a clearer
image if the model’s confidence falls below 40%, helping to maintain reliability in real-
world usage.

Scalability Potential

The current workflow is designed to operate efficiently on CPU-based infrastructure.
However, the modular architecture supports future enhancements, such as: Real-time
video frame analysis for automated sorting.

6.3 Achievements and Improvements

This project demonstrates a significant improvement in fish freshness classification us-
ing computer vision techniques based on deep learning. The developed system not
only surpasses previous works in terms of classification accuracy but also improves
generalizability, user accessibility, and practical deployment.

User-Centric Improvements

Beyond performance metrics, this project achieved several practical milestones that
make the solution deployable and user-friendly:
A fully functional web application was deployed using Streamlit, enabling real-time
freshness predictions from uploaded fish eye images and effectively bridging the gap
between research and practical application [36]. To ensure transparency, Grad-CAM
visualizations are integrated, helping users understand the specific regions of the fish
eye image that influenced the model’s predictions, in line with responsible AI principles
[18]. Additionally, the system supports low-latency inference, with prediction times
consistently under one second on most consumer-grade hardware, making it suitable
for real-world field applications.

Scientific and Educational Impact

This work provides an accessible, replicable framework for students and professionals
interested in applying AI in food quality control:
The dataset and model are openly accessible, ensuring transparency and repro-
ducibility. Additionally, all code is designed to run on free or low-cost environ-
ments, such as Google Colab, making the system easily accessible to a wider audience.
The evaluation process includes a comprehensive set of metrics, such as accuracy,
confusion matrix, classification report, ROC curves, and visual heatmaps, to
thoroughly assess the model’s performance.
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Summary

In summary, the system achieved a state-of-the-art result in fish freshness classification
using eye images. By integrating a strong architecture, well-balanced dataset, and ex-
plainable outputs, this work sets a new baseline for practical, interpretable AI solutions
in food quality assessment. It clearly improves upon prior efforts both in predictive
performance and deployability.

6.4 Limitations and Future Work

Despite the promising results achieved in this project, several limitations remain that
open the door for future improvements. These limitations are related to both the
dataset characteristics and the technical choices made during the development process.

Limitations

Limited Dataset Diversity: The Freshness of Fish Eyes (FFE) dataset, while cov-
ering eight species and three freshness levels, remains limited in its representation of
real-world variability such as lighting, background clutter, or fish eye orientation [20].
In practice, such variations could impact prediction reliability when deployed in un-
controlled environments.
Temporal Overlap in Freshness Labels: The freshness levels (e.g., days 3–4 labeled
as “Fresh”) assume a linear spoilage pattern. However, real-world decomposition may
vary depending on temperature, humidity, or species-specific physiology [39].
Inference Resource Dependency: While inference is relatively fast, deployment in
low-resource environments (e.g., fishing ports, rural markets) may still face latency or
hardware constraints, especially on mobile devices without GPU support.

Future Work

To further enhance the model and broaden its impact, the following improvements are
suggested:
A more diverse and larger dataset should be collected, including additional species,
varied lighting conditions, different angles, and environmental noise, with data from
real-life retail or fishery environments enhancing robustness. Future systems could
integrate multi-modal inputs, such as gill or skin images, temperature records, or sensor
data (e.g., e-nose or e-tongue), to build a more comprehensive freshness prediction
system [40, 41]. Furthermore, converting the model to TensorFlow Lite or ONNX and
applying post-training quantization could reduce its size and computational demand,
making it suitable for mobile deployment [42]. In terms of explainability, beyond Grad-
CAM, applying interpretability techniques like SHAP or LIME could improve trust
and understanding of model predictions, especially for commercial stakeholders [43].
Finally, adapting the model to different geographical regions where spoilage rates or
storage techniques vary could help tailor the system to local supply chains.
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