https://repository.esi-sba.dz/jspui/handle/123456789/436
Title: | Machine Learning and Deep Learning for Rainfall Forecasting Using Weather Data. |
Authors: | MEDDAH, HAfsa |
Keywords: | Machine Learning Deep learning Rainfall Forecasting Climatic Changes Climatic Analysis Artificial Intelligence Weather Data |
Issue Date: | 2023 |
Abstract: | ABSTRACT : With the increasing impact of global warming and the diverse climatic conditions prevalent in the Globe, the irregularity of rainfall patterns has become a significant concern, and rainfall forecasting has become very challenging. Our work aims to investigate the effectiveness of using weather data for rainfall forecasting with various learning techniques. The research objectives encompass identifying the most performant Machine and Deep Learning Algorithms for the rain forecasting task, finding the most relevant weather data features,uncovering the best pairing between the different algorithms and the features for maximized accuracy. By addressing these objectives, this study contributes to a better understanding of how weather data can be utilized to improve rainfall forecasting.*** RÉSUMÉ : Avec l’impact croissant du réchauffement climatique et les diverses conditions climatiques prévalant dans le Globe, l’irrégularité des régimes de précipitations est devenue une préoccupation importante, et les prévisions de précipitations sont devenues très difficiles. Notre travail vise à étudier l’efficacité de l’utilisation des données météorologiques pour la prévision des précipitations avec diverses techniques d’apprentissage. Les objectifs de recherche englobent l’identification des algorithmes de machine et d’apprentissage profond les plus performants pour la tâche de prévision de la pluie, la recherche des caractéristiques de données météorologiques les plus pertinentes,la découverte de la meilleure association entre les différents algorithmes et les fonctionnalités pour une précision maximale. En abordant ces objectifs, cette étude contribue à une meilleure compréhension de la façon dont les données météorologiques peuvent être utilisées pour améliorer les prévisions de précipitations. |
Description: | Superviseur : Mr. Sahraoui DHELIM Mr. Souleymene CHAIB |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/436 |
Appears in Collections: | Master |
File | Description | Size | Format | |
---|---|---|---|---|
rapport_de_Master_Meddah-1-1.pdf | 160,13 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.