DC Field | Value | Language |
dc.contributor.author | HAMMA, RAhma | - |
dc.contributor.author | BOUMARAF, MAlak | - |
dc.date.accessioned | 2023-10-15T07:27:43Z | - |
dc.date.available | 2023-10-15T07:27:43Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/472 | - |
dc.description | Encadrant : Pr. Sidi Mohammed BENSLIMANE / Co-encadrant : Dr. Mohamed Walid ATTAOUI | en_US |
dc.description.abstract | ABSTRACT :
Intelligent transportation systems (ITS) and artificial intelligence (AI)
are spurring us to pave the way for the widespread adoption of autonomous
vehicles (AVs), which have led to the emergence of smart roads, mobility
comfort, and improved traffic safety.
Many new artificial intelligence-based technologies are being used to perform
important functions such as decision making, motion planning, scene
understanding, vehicle control, and social behavior.
A highly intelligent decision-making system that can handle complex
road geometry and effectively follow routing information has become a valuable
welcome asset to the world. This paper emphasizes deep reinforcement
learning-based methods; which enable complex policies to be learned in high
dimensional environments, as opposed to traditional planar techniques that
have been widely researched in the past.
The DRL algorithms used so far find solutions to the four main problems
of autonomous driving, in our thesis we highlight the current challenges and
point to possible future research directions. ***
Resume :
Les syst`emes de transport intelligents (ITS) et l’intelligence artificielle
(IA) nous incitent `a ouvrir la voie `a l’adoption g´en´eralis´ee des v´ehicules
autonomes (VA), qui ont conduit `a l’´emergence de routes intelligentes, au
confort de la mobilit´e et `a l’am´elioration de la s´ecurit´e routi`ere.
De nombreuses nouvelles technologies bas´ees sur l’intelligence artificielle
sont utilis´ees pour ex´ecuter des fonctions importantes telles que la prise de
d´ecision, la planification des mouvements, la compr´ehension des sc`enes, le
contrˆole des v´ehicules et le comportement social.
Un syst`eme de prise de d´ecision hautement intelligent capable de g´erer
une g´eom´etrie routi`ere complexe et de suivre efficacement les informations
d’itin´eraire est devenu un atout pr´ecieux et bienvenu dans le monde. Cet
article met l’accent sur les m´ethodes bas´ees sur l’apprentissage par renforcement
profond ; qui permettent d’apprendre des politiques complexes dans
des environnements de haute dimension, par opposition aux techniques planaires
traditionnelles qui ont fait l’objet de nombreuses recherches dans le
pass´e.
Les algorithmes DRL utilis´es jusqu’`a pr´esent trouvent des solutions aux
quatre principaux probl`emes de la conduite autonome. Dans notre th`ese,
nous mettons en ´evidence les d´efis actuels et indiquons de possibles directions
de recherche futures. | en_US |
dc.language.iso | en | en_US |
dc.subject | Autonomous Driving | en_US |
dc.subject | Reinforcement Learning | en_US |
dc.subject | Deep QNetworks | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Deep Learning | en_US |
dc.title | Deep Reinforcement Learning for Autonomous Driving | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Master
|