DC Field | Value | Language |
dc.contributor.author | TOUATI, ABderrahmane | - |
dc.date.accessioned | 2023-10-19T08:36:06Z | - |
dc.date.available | 2023-10-19T08:36:06Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/559 | - |
dc.description | Supervisor : Dr. Bensenane Hamdan | en_US |
dc.description.abstract | Abstract :
In recent years, biometric recognition, encompassing face recognition and fingerprint
recognition, has emerged as a crucial field in modern technology.
This thesis provides an extensive review of the state-of-the-art advancements in these
two prominent biometric recognition techniques. The study examines the methodologies,
challenges, and potential future directions in face recognition and fingerprint recognition.
Face recognition has witnessed remarkable progress driven by machine learning and
computer vision techniques, utilizing deep learning models and large-scale face databases.
Fingerprint recognition, a widely adopted biometric technique, has seen advancements in
algorithms and sensor technologies, particularly in minutiae-based matching algorithms
and improved acquisition sensors. The thesis addresses challenges such as pose variations,
illumination changes, and image quality, aiming to enhance the performance and reliability
of biometric recognition systems.
By analyzing the existing literature and evaluating different approaches, this research
contributes to the advancement and improvement of face recognition and fingerprint
recognition systems, making them more accurate and robust for various applications in
security and identity verification domains. ***
Résumé :
Au cours des derni`eres ann´ees, la reconnaissance biom´etrique, comprenant la reconnaissance
faciale et la reconnaissance des empreintes digitales, est devenue un domaine
essentiel dans la technologie moderne.
Cette th`ese offre une revue exhaustive des avanc´ees de pointe dans ces deux techniques
de reconnaissance biom´etrique majeures. L’´etude examine les m´ethodologies, les d´efis et
les orientations futures potentielles de la reconnaissance faciale et de la reconnaissance
des empreintes digitales. La reconnaissance faciale a connu des progr`es remarquables
grˆace aux techniques d’apprentissage automatique et de vision par ordinateur, en utilisant
des mod`eles d’apprentissage profond et des bases de donn´ees de visages `a grande ´echelle.
La reconnaissance des empreintes digitales, quant `a elle, repose sur des algorithmes de
correspondance bas´es sur les minuties et des technologies de capteurs am´elior´ees. Cette
th`ese aborde les d´efis tels que les variations de pose, les changements d’´eclairage et la
qualit´e de l’image, dans le but d’am´eliorer les performances et la fiabilit´e des syst`emes de
reconnaissance biom´etrique.
En analysant la litt´erature existante et en ´evaluant diff´erentes approches, cette
recherche contribue `a l’avancement et `a l’am´elioration des syst`emes de reconnaissance
faciale et de reconnaissance des empreintes digitales, les rendant plus pr´ecis et plus fiables
pour diverses applications dans les domaines de la s´ecurit´e et de la v´erification d’identit´e. | en_US |
dc.language.iso | en | en_US |
dc.subject | Biometric Recognition | en_US |
dc.subject | Face Recognition | en_US |
dc.subject | Fingerprint Recognition | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Deep Learning Algorithms | en_US |
dc.title | Advancements in Deep Learning-Based Fingerprint and Facial Recognition: A State-of-the-Art Exploration | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Master
|