DC Field | Value | Language |
dc.contributor.author | KERMALI, ABdelfatah | - |
dc.date.accessioned | 2023-10-22T07:28:46Z | - |
dc.date.available | 2023-10-22T07:28:46Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/579 | - |
dc.description | Encadreur : M. Soleyman Chaib / Co-Encadreur : M. BEZOUI Madani / M. OUCHANI Samir | en_US |
dc.description.abstract | Abstract :
The evolving paradigm of Reconfigurable Manufacturing System (RMS) stands as a promising
response to the rapidly changing requirements of both the market and the manufacturing
systems. Characterised by its inherent flexibility, scalability and adaptability, RMS has
received considerable attention in recent years. This thesis provides a comprehensive
review of RMS, including a thorough exploration of their theoretical foundations, practical
implementations, and emerging optimisation methods.Furthermore, this thesis presents a
novel Deep Reinforcement Learning (DRL) solution for scheduling, reconfiguration, and
balancing RMS problems. It highlights its potential to improve system performance and
adaptability.Ultimately, this work aims to stimulate further research and development in this
field and to serve as a valuable resource for researchers and practitioners seeking to harness
the transformative power of RMS in modern manufacturing.***
Résumé :
Le modèle évolutif des systèmes de fabrication reconfigurables (RMS) constitue une réponse
prometteuse à l’évolution rapide des exigences du marché et des systèmes de fabrication. Cette thèse
fournit un examen complet des RMS, y compris une exploration approfondie de leurs fondements
théoriques, de leurs implémentations pratiques et des méthodes d’optimisation émergentes. En fin
de compte, ce travail vise à stimuler la recherche et le développement dans le domaine des RMS
et à servir de ressource précieuse pour les chercheurs et les praticiens qui cherchent à exploiter le
pouvoir de transformation des RMS dans la fabrication moderne. | en_US |
dc.language.iso | en | en_US |
dc.subject | Reconfigurable Manufacturing System | en_US |
dc.subject | Comprehensive Review | en_US |
dc.subject | RMS Analysis | en_US |
dc.subject | Deep Reinforcement Learning | en_US |
dc.subject | Hierachcical Systems | en_US |
dc.subject | Multi-Agent Systems | en_US |
dc.title | Reconfigurable Manufacturing Systems: A Comprehensive Review and A Deep Reinforcement Learning Framework | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Ingénieur
|