Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/64
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAKSA, DJemai-
dc.contributor.authorOMARI, FEth ALlah WAlid-
dc.date.accessioned2022-03-29T09:41:37Z-
dc.date.available2022-03-29T09:41:37Z-
dc.date.issued2020-
dc.identifier.urihttps://repository.esi-sba.dz/jspui/handle/123456789/64-
dc.descriptionMr A. Rahmoun Encadreur Mr H. Bensenan Co-encadreuren_US
dc.description.abstractIn thelate20thcentury,theurgentneedtoprocesstheexponentiallyrisingcollecteddata about cardiovasculardiseasesledtheresearcherstoexplorethepotentialresultsofdecision support systems(DSS).ProvidedthattheECGsignalplaystheimportantroleintheclinical diagnosis ofheartdiseases,variousmethodsundertookthistimeseriesdataanalysisasastep forwardtowardimplementingtheirinterpretationmodels. This thesispresentstheprincipalpartsofECGanalysesandtheinnovativestate-of-the- art classificationmethodsoftheaforementioneddata.Intheinterestofclassifyingthemost common typeofCVDs“arrhythmias”.Precededbygeneralconceptsandimportantinformation to preparethereadertocomprehendthefollowingmethodologiesandparadigmsused. In theliterature,MostmethodsstartedbyacquiringECGdatafromthepubliclyavailable datasets, mainlyMIT-BIHarrhythmiadatabase.Followingthisphase,apreprocessingofthe signal alongwithfeatureextraction,selection,and/ortransformation.Finally,theclassification and evaluationprocess,yieldingsuccessmeasuresoftheadoptedmethod. Manyresearcherstooktwomainapproachestoclassify:1)individualheartbeats,2)longer- term ECGsignals.Likewise,usingthesameordifferentpatientdatafortrainingandtestsets as validationmethod.Asaresult,theyusedmanymechanismsproducingexcellentresults, although somepronetoerrorand/orbiased. This topicofresearchstillneedsattentioninsomeareaswhereambiguityfallsupon.More- overtosomeclinicalimplicationforevaluatingtheDSS.en_US
dc.language.isoenen_US
dc.titleDecision Support Systems for Cardio Vascular Disease using Deep Learning Techniquesen_US
dc.typeThesisen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
Master.pdf583,65 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.