DC Field | Value | Language |
dc.contributor.author | AKSA, DJemai | - |
dc.contributor.author | OMARI, FEth ALlah WAlid | - |
dc.date.accessioned | 2022-03-29T09:41:37Z | - |
dc.date.available | 2022-03-29T09:41:37Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/64 | - |
dc.description | Mr A. Rahmoun Encadreur Mr H. Bensenan Co-encadreur | en_US |
dc.description.abstract | In thelate20thcentury,theurgentneedtoprocesstheexponentiallyrisingcollecteddata
about cardiovasculardiseasesledtheresearcherstoexplorethepotentialresultsofdecision
support systems(DSS).ProvidedthattheECGsignalplaystheimportantroleintheclinical
diagnosis ofheartdiseases,variousmethodsundertookthistimeseriesdataanalysisasastep
forwardtowardimplementingtheirinterpretationmodels.
This thesispresentstheprincipalpartsofECGanalysesandtheinnovativestate-of-the-
art classificationmethodsoftheaforementioneddata.Intheinterestofclassifyingthemost
common typeofCVDs“arrhythmias”.Precededbygeneralconceptsandimportantinformation
to preparethereadertocomprehendthefollowingmethodologiesandparadigmsused.
In theliterature,MostmethodsstartedbyacquiringECGdatafromthepubliclyavailable
datasets, mainlyMIT-BIHarrhythmiadatabase.Followingthisphase,apreprocessingofthe
signal alongwithfeatureextraction,selection,and/ortransformation.Finally,theclassification
and evaluationprocess,yieldingsuccessmeasuresoftheadoptedmethod.
Manyresearcherstooktwomainapproachestoclassify:1)individualheartbeats,2)longer-
term ECGsignals.Likewise,usingthesameordifferentpatientdatafortrainingandtestsets
as validationmethod.Asaresult,theyusedmanymechanismsproducingexcellentresults,
although somepronetoerrorand/orbiased.
This topicofresearchstillneedsattentioninsomeareaswhereambiguityfallsupon.More-
overtosomeclinicalimplicationforevaluatingtheDSS. | en_US |
dc.language.iso | en | en_US |
dc.title | Decision Support Systems for Cardio Vascular Disease using Deep Learning Techniques | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Master
|