Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/660
Full metadata record
DC FieldValueLanguage
dc.contributor.authorACHAB, HOussem-
dc.date.accessioned2024-09-24T09:33:21Z-
dc.date.available2024-09-24T09:33:21Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.esi-sba.dz/jspui/handle/123456789/660-
dc.descriptionEncadrant : Dr. ELARBI BOUDIHIR Mohamed Co-encadrant : Pr. RAHMOUN Abdellatifen_US
dc.description.abstractDuring the last few years, many breakthroughs in the field of semi-supervised learning have proven to be very effective in overcoming the lack of labeled images caused by the high cost of pixel-level labeling. Numerous approaches exploring the use of both labeled and unlabeled images have been published. This thesis explores the current state of the art in semi-supervised semantic segmentation, highlighting experimental results, current challenges, and future research directions in this field.en_US
dc.language.isoenen_US
dc.subjectSemantic Image Segmentationen_US
dc.subjectDeep Learningen_US
dc.subjectSemi-Supervised Learningen_US
dc.titleÉtude comparative des méthodes semi-supervisées pour la segmentation sémantiqueen_US
dc.typeThesisen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
MasterAchab(4)-1-1.pdf49,38 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.