Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/744
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLAREDJ, IMad EDdine-
dc.date.accessioned2024-10-13T10:04:54Z-
dc.date.available2024-10-13T10:04:54Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.esi-sba.dz/jspui/handle/123456789/744-
dc.descriptionSupervisor : Mr. Jean-François Dollinger / Mr. Simon Caillard / Mr. Abdelkader Amraneen_US
dc.description.abstractIn this thesis, we address the challenges of task placement in edge-cloud computing environments by presenting a task placement model to overcome the limitations of traditional scheduling techniques. Our model aims to minimise delays associated with user requests by generating appropriate job placement strategies, supporting multi-user scenarios, and introducing a novel task duplication approach to mitigate transmission costs. Through our experiments, we demonstrate the effectiveness of our model in improving response times and meeting user deadlines, particularly in scenarios where conventional task-to-resource assignments would be impractical.en_US
dc.language.isoenen_US
dc.subjectHigh Performance Computingen_US
dc.subjectTask Placementen_US
dc.subjectCloud Computingen_US
dc.subjectEdge Computingen_US
dc.subjectDistributed Computingen_US
dc.subjectNP-Hardnessen_US
dc.subjectExact solutionen_US
dc.subjectHeuristic Approachen_US
dc.titleOptimising Task Placement in Edge-Cloud Computingen_US
dc.typeThesisen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
End_of_Study_Report_Imad_Eddine_Laredj_2023_2024-1-1.pdf72,59 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.