https://repository.esi-sba.dz/jspui/handle/123456789/302
Title: | Time Series Forecasting using Machine Learning and Deep Learning techniques |
Authors: | KHIATI, KHaled Walid HAMORUNE, YOucef |
Keywords: | Time Series Forecasting Machine Learning Deep Learning |
Issue Date: | 2021 |
Abstract: | Time series forecasting is the behavior of predicting the future after careful consideration and analysis of the past, due to the essential significance of this task in countless areas such as science, business and engineering. Preparing an acceptable model to fit and then forecast the series is a difficult process since each signal/series has unique features and dependence on foreign parameters that are difficult to capture in the model. There are several Time Series forecasting methods available today, each needing adequate data preparation and analysis to produce a meaningful prediction. The purpose of this paper is to undertake a comparison research on the most widely used Time Series estimators in order to compare their performance on a wide range of series from various areas (economics, finance, meteorology, etc...) using machine learning and deep learning techniques. Some of the implemented models are automated, making hyper-parameter search a component of the model, allowing it to be utilized without any prior knowledge of the models or the datasets on which it will be applied*** La prévision des séries temporelles est le comportement qui consiste à prédire l’avenir après avoir soigneusement examiné et analysé le passé, en raison de l’importance essentielle de cette tâche dans d’innombrables domaines tels que la science, les affaires et l’ingénierie. La préparation d’un modèle acceptable pour ajuster et ensuite prévoir les séries est un processus difficile car chaque signal/série a des caractéristiques uniques et dépend de paramètres étrangers qui sont difficiles à capturer dans le modèle. Il existe aujourd’hui plusieurs méthodes de prévision des séries temporelles, chacune d’entre elles nécessitant une préparation et une analyse adéquates des données pour produire une prédiction significative. L’objectif de cet article est d’entreprendre une recherche comparative sur les estimateurs de séries temporelles les plus largement utilisés afin de comparer leurs performances sur un large éventail de séries provenant de divers domaines (économie, finance, météorologie, etc...) en utilisant des techniques d’apprentissage automatique et d’apprentissage profond. Certains des modèles implémentés sont automatisés, faisant de la recherche d’hyper-paramètres une composante du modèle, ce qui permet de l’utiliser sans aucune connaissance préalable des modèles ou des jeux de données sur lesquels elle sera appliquée. |
Description: | Dr KECHAR Mohamed Encadreur |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/302 |
Appears in Collections: | Master |
File | Description | Size | Format | |
---|---|---|---|---|
Khiati-Hamroun-Master-2021-1-.pdf | 161,53 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.