Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/379
Title: D´etection du COVID-19 par r´eseaux convolutionnels et `a l’aide des images radiologiques (X-rays)
Authors: BELLAOUEDJ, ISmail
Keywords: Deep Learning
Convolutional Neural Networks
Covid-19 Detection
Transfer Learning Transfer
Issue Date: 2022
Abstract: Currently, several studies are discussing the detection of lung diseases by analyzing medical images using deep learning. Deep learning is also a valuable aid to experts in the interpretation of medical images. Heuristics such as transfer learning (a deep learning method where a model developed for a given task is reused as a starting point for another model that targets a second task) is emerging. These approaches (based on pre-trained models) are used as the starting point for computer vision tasks and can offer considerable gains to many problems. In this manuscript, we going to review recent researches that implement Convolutional Neural Networks (CNN) models to detect the presence of COVID-19 in X-ray images. *** Actuellement, plusieurs ´etudes discutent la d´etection des maladies pulmonaires en analysant images m´edicales en exploitant l’apprentissage profond (deep learning).Ce dernier constitue aussi une aide pr´ecieuse aux experts pour l’interpr´etation des images m´edicales. Des heuristiques telles que l’apprentissage par transfert(une m´ethode d’apprentissage profond o`u un mod`ele d´evelopp´e pour une tˆache est r´eutilis´e comme point de d´epart d’un mod`ele sur une seconde tˆache) est en train d’´emerger. Ces approches `a base de mod`eles pr´e-entraˆın´es sont utilis´es comme le point de d´epart des tˆaches de vision par ordinateur et peuvent leur assurer d’ ´enormes gains. Dans ce manuscrit, nous allons passer en revue les recherches r´ecentes qui mettent en oeuvre des mod`eles de r´eseaux neuronaux convolutifs (CNN) pour d´etecter la pr´esence de COVID-19 dans les images radiologiques.
Description: Encadreur : Mr HADJILA Fethallah Co-Encadreur : Mr AMAR BENSABER Djamel
URI: https://repository.esi-sba.dz/jspui/handle/123456789/379
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
Rapport_Master (2)-1-1.pdf49,61 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.