DC Field | Value | Language |
dc.contributor.author | ABDELLATIF, ABdelraouf | L |
dc.contributor.author | KHEMKHAM, MOhamed | - |
dc.date.accessioned | 2023-10-15T10:01:36Z | - |
dc.date.available | 2023-10-15T10:01:36Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/492 | - |
dc.description | Encadrant : Dr Sid Ahmed Benabderrahmane / Co-Encadrant : Pr Sidi Mohammed Benslimane | en_US |
dc.description.abstract | ABSTRACT :
In this study, we leverage techniques from machine learning, deep learning, natural
language processing and sentiment analysis to investigate the presence and impact of
biases in the coverage of the Western news platforms and social media sources.
Our focus centers around detecting and analyzing biases, differentiating between intentional
and accidental misinformation, and interpreting how these biases may influence
public perception, followed by sentiment analysis to study the variation of sentiments
over time.
This research report delves into the intersection of Machine Learning (ML), Deep Learning
(DL), Natural Language Processing (NLP), sentiment analysis, and media bias detection.
The study elucidates how these innovative technologies can be leveraged to
scrutinize and interpret media content, ensuring unbiased information dissemination..***
RÉSUMÉ :
Dans cette étude, nous exploitons des techniques issues de l’apprentissage automatique,
de l’apprentissage profond, du traitement du langage naturel et de l’analyse des sentiments
pour examiner la présence et l’impact des biais dans la couverture des plateformes
d’information occidentales et des sources de médias sociaux.
Notre attention se concentre sur la détection et l’analyse des biais, en différenciant
les informations erronées intentionnelles et accidentelles, et en interprétant comment
ces biais peuvent influencer la perception du public, suivis par une analyse des sentiments
pour étudier la variation des sentiments dans le temps.
Ce mémoire se plonge dans l’intersection de l’Apprentissage Automatique (AA), de
l’Apprentissage Profond (AP), du Traitement du Langage Naturel (TLN), de l’analyse
des sentiments et de la détection des biais médiatiques. L’étude éclaire comment ces
technologies innovantes peuvent être exploitées pour scruter et interpréter le contenu
médiatique, assurant une diffusion de l’information sans biais. | en_US |
dc.language.iso | en | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Natural Language Processing | en_US |
dc.subject | Support Vector Machines | en_US |
dc.subject | Mean Square Error | en_US |
dc.subject | Least Absolute Shrinkage And Selection Operator | en_US |
dc.subject | L1 norms | en_US |
dc.subject | L2 norms | en_US |
dc.subject | Continuous Bag Of Words | en_US |
dc.subject | Global Vectors For Word Representation | en_US |
dc.subject | Proportional Hazards Regression | en_US |
dc.subject | K-Nearest Neighbors | en_US |
dc.subject | Principal Component Analysis | en_US |
dc.subject | t-Distributed Stochastic Neighbor Embedding | en_US |
dc.subject | Long Short-Term Memory | en_US |
dc.subject | Gated Recurrent Units | en_US |
dc.subject | Radial Basis Function Networks | en_US |
dc.subject | Generative Adversarial Networks | en_US |
dc.subject | Self-Organizing Maps | en_US |
dc.subject | Term Frequency | en_US |
dc.subject | Inverse Document Frequency | en_US |
dc.subject | Term Frequency-Inverse Document Frequency | en_US |
dc.subject | Automatic Speech Recognition | en_US |
dc.subject | Conditional Random Fields | en_US |
dc.subject | Bidirectional Long Short-Term Memory | en_US |
dc.subject | Stanford Question Answering Dataset | en_US |
dc.subject | Question Answering | en_US |
dc.subject | Named Entity Recognition | en_US |
dc.subject | Document Understanding Conference | en_US |
dc.title | Brainwashing 2.0: Bias and double standard in western social media and news outlets. | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Master
|