DC Field | Value | Language |
dc.contributor.author | FELLAH, ASma | - |
dc.contributor.author | KOUALED, AMina SAmah | - |
dc.date.accessioned | 2024-09-24T09:20:09Z | - |
dc.date.available | 2024-09-24T09:20:09Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/657 | - |
dc.description | Supervisor : Dr. Sid Ahmed Benabderrahmane Co-Supervisor : Pr. Sidi Mohammed BENSLIMANE | en_US |
dc.description.abstract | This thesis investigates the relationship between social media sentiment and bank
stock market performance, particularly during financial distress. By analyzing the
sentiment of tweets and YouTube comments about bank stocks during critical periods,
the study aims to determine how negative social media narratives influence stock market
declines.
Using advanced sentiment analysis and Formal Concept Analysis (FCA), the research
uncovers hidden patterns and relationships within the data, providing a unique
perspective on the impact of social media sentiment. The findings are expected to
improve the accuracy and timeliness of forecasting models for bank stock performance.
This study underscores the importance of monitoring social media as part of financial
risk management, highlighting the potential of big data and machine learning
techniques, especially FCA, to enhance market surveillance and financial system resilience. ***
Cette th`ese examine la relation entre le sentiment des m´edias sociaux et la performance
des actions bancaires, notamment en p´eriode de d´etresse financi`ere. En analysant
le sentiment des tweets et des commentaires YouTube sur les actions bancaires pendant
les p´eriodes critiques, l’´etude vise `a d´eterminer comment les r´ecits n´egatifs des m´edias
sociaux influencent les baisses du march´e boursier.
En utilisant des techniques avanc´ees d’analyse de sentiment et d’Analyse Formelle
de Concepts (AFC), la recherche met en lumi`ere des sch´emas et des relations cach´es
dans les donn´ees, offrant ainsi une perspective unique sur l’impact du sentiment des
m´edias sociaux. Les r´esultats devraient am´eliorer l’exactitude et la rapidit´e des mod`eles
de pr´evision de la performance des actions bancaires.
Cette ´etude souligne l’importance de surveiller les m´edias sociaux dans le cadre de la
gestion des risques financiers, mettant en avant le potentiel des techniques de big data
et d’apprentissage automatique, en particulier l’AFC, pour am´eliorer la surveillance des
march´es et la r´esilience du syst`eme financier. | en_US |
dc.language.iso | en | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Stock Market Prediction | en_US |
dc.subject | Bank Stocks | en_US |
dc.subject | Social Media Sentiment | en_US |
dc.subject | Sentiment Analysis | en_US |
dc.subject | Bank Runs | en_US |
dc.subject | Market Sentiment | en_US |
dc.subject | Polarity of Tweets | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Formal Concept Analysis | en_US |
dc.title | Exposure of Bank Run to Social Media: Predicting bank stock market losses from Twitter and YouTube conversation | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Ingénieur
|