Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFELLAH, ASma-
dc.contributor.authorKOUALED, AMina SAmah-
dc.date.accessioned2024-09-24T09:20:09Z-
dc.date.available2024-09-24T09:20:09Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.esi-sba.dz/jspui/handle/123456789/657-
dc.descriptionSupervisor : Dr. Sid Ahmed Benabderrahmane Co-Supervisor : Pr. Sidi Mohammed BENSLIMANEen_US
dc.description.abstractThis thesis investigates the relationship between social media sentiment and bank stock market performance, particularly during financial distress. By analyzing the sentiment of tweets and YouTube comments about bank stocks during critical periods, the study aims to determine how negative social media narratives influence stock market declines. Using advanced sentiment analysis and Formal Concept Analysis (FCA), the research uncovers hidden patterns and relationships within the data, providing a unique perspective on the impact of social media sentiment. The findings are expected to improve the accuracy and timeliness of forecasting models for bank stock performance. This study underscores the importance of monitoring social media as part of financial risk management, highlighting the potential of big data and machine learning techniques, especially FCA, to enhance market surveillance and financial system resilience. *** Cette th`ese examine la relation entre le sentiment des m´edias sociaux et la performance des actions bancaires, notamment en p´eriode de d´etresse financi`ere. En analysant le sentiment des tweets et des commentaires YouTube sur les actions bancaires pendant les p´eriodes critiques, l’´etude vise `a d´eterminer comment les r´ecits n´egatifs des m´edias sociaux influencent les baisses du march´e boursier. En utilisant des techniques avanc´ees d’analyse de sentiment et d’Analyse Formelle de Concepts (AFC), la recherche met en lumi`ere des sch´emas et des relations cach´es dans les donn´ees, offrant ainsi une perspective unique sur l’impact du sentiment des m´edias sociaux. Les r´esultats devraient am´eliorer l’exactitude et la rapidit´e des mod`eles de pr´evision de la performance des actions bancaires. Cette ´etude souligne l’importance de surveiller les m´edias sociaux dans le cadre de la gestion des risques financiers, mettant en avant le potentiel des techniques de big data et d’apprentissage automatique, en particulier l’AFC, pour am´eliorer la surveillance des march´es et la r´esilience du syst`eme financier.en_US
dc.language.isoenen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectStock Market Predictionen_US
dc.subjectBank Stocksen_US
dc.subjectSocial Media Sentimenten_US
dc.subjectSentiment Analysisen_US
dc.subjectBank Runsen_US
dc.subjectMarket Sentimenten_US
dc.subjectPolarity of Tweetsen_US
dc.subjectMachine Learningen_US
dc.subjectFormal Concept Analysisen_US
dc.titleExposure of Bank Run to Social Media: Predicting bank stock market losses from Twitter and YouTube conversationen_US
dc.typeThesisen_US
Appears in Collections:Ingénieur

Files in This Item:
File Description SizeFormat 
pfe-1-1.pdf68,56 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.