https://repository.esi-sba.dz/jspui/handle/123456789/695
Title: | Geospatial and Predictive Optimization of Sales Routes: Beat Optimization Using Machine Learning Techniques |
Authors: | MERZOUG, MAnal SAHEL, MAnar |
Keywords: | Sales Route Optimization Clustering Algorithms Spatial Analysis Machine Learning Route Planning Customer Visit Schedules |
Issue Date: | 2024 |
Abstract: | Sales route optimization is a critical challenge for companies in various sectors, impacting operational costs, sales team productivity, and customer satisfaction. This project presents a novel solution for SAHM Technologies that leverages machine learning and spatial analysis techniques to automate and optimize sales routes. The proposed method utilizes clustering algorithms to segment customer locations based on geographical proximity and other relevant parameters. This creates efficient and well-balanced sales zones, further tailored to ensure manageable workloads for sales representatives while accounting for specific operational cycles. This automation streamlines the route planning process, minimizing manual efforts and associated errors. The implemented system integrates advanced algorithms with user-friendly interfaces, empowering sales managers to design optimized delivery routes, generate permanent journey plans, access valuable route statistics, and suggest optimal visit cycles for clients. This solution offers significant benefits, including reduced operational costs, improved sales team productivity, enhanced customer satisfaction, and data-driven insights for strategic planning. *** L’optimisation des routes de vente représente un défi critique pour les entreprises de divers secteurs, impactant les coûts opérationnels, la productivité des équipes de vente et la satisfaction des clients. Ce projet présente une solution novatrice pour SAHM Technologies qui exploite les techniques d’apprentissage automatique et d’analyse spatiale pour automatiser et optimiser les routes de vente. La méthode proposée utilise des algorithmes de regroupement pour segmenter les emplacements des clients en fonction de la proximité géographique et d’autres paramètres pertinents. Cela crée des zones de vente efficaces et bien équilibrées, adaptées pour garantir des charges de travail gérables pour les représentants commerciaux tout en tenant compte des cycles opérationnels spécifiques. Cette automatisation simplifie le processus de planification des routes, minimisant les efforts manuels et les erreurs associées. Le système mis en oeuvre intègre des algorithmes avancés avec des interfaces conviviales, permettant aux responsables commerciaux de concevoir des itinéraires de livraison optimisés, de générer des plans de voyage permanents, d’accéder à des statistiques précieuses sur les routes et de suggérer des cycles de visite optimaux pour les clients. Cette solution offre des avantages significatifs, notamment une réduction des coûts opérationnels, une amélioration de la productivité des équipes de vente, une satisfaction client accrue et des informations basées sur les données pour la planification stratégique. |
Description: | Supervisor : Dr. Chaib Souleyman |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/695 |
Appears in Collections: | Ingénieur |
File | Description | Size | Format | |
---|---|---|---|---|
Final_Year_Project_Report (13)-1-1.pdf | 71,45 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.