| DC Field | Value | Language |
| dc.contributor.author | SLIMANE, CHaima | - |
| dc.date.accessioned | 2025-10-13T08:25:48Z | - |
| dc.date.available | 2025-10-13T08:25:48Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/783 | - |
| dc.description | Supervisor : Dr. LAHLOU Laaziz / Pr. KARA Nadjia Co-Supervisor : Pr. BENSLIMANE Sidi Mohammed | en_US |
| dc.description.abstract | Tools for feature extracting and classifying packets/flows present in packet capture files,
also known as PCAP, utilized in machine-learning-based (ML) intrusion detection systems,
are essential processes for validating intrusion detection models and algorithms.
These ML-based techniques rely on such tools, and their effectiveness in detecting cyberattacks
is solely tied to them, in addition to the quality of the training datasets.
While the latter is of utmost importance, this study focuses on the most recently used
tools in the literature that the research community uses from a microscopic view and
unveils any shortcomings and technical glitches that can mislead the scientific findings.
NTLFlowlyzer and NFStream are two of them. FlowMeter, a tool developed and
released by deepfence, one of the fastest-growing cloud-native application protection
platforms, is also considered in this investigation. This work contributes a detailed
comparative evaluation of these three tools across public and private datasets, and
investigates their impact on the performance of various ML models. By uncovering
tool-specific limitations and practical issues, our study provides actionable insights to
guide researchers and practitioners in selecting the most suitable analysis framework
for robust intrusion detection.. ***
Les outils d’extraction des attributs et de classification des paquets ou flux issus de
fichiers PCAP sont essentiels dans les systèmes de détection d’intrusion basés sur l’apprentissage
automatique. La performance de ces systèmes dépend à la fois de ces outils
et de la qualité des jeux de données utilisés pour l’entraînement.
Cette étude se focalise sur trois outils récents largement utilisés dans la littérature :
NTLFlowlyzer, NFStream, et FlowMeter (développé par Deepfence). Elle apporte une
évaluation comparative approfondie de ces trois outils sur des jeux de données publics
et privés, et examine leur impact sur les performances de différents modèles d’apprentissage
automatique. En révélant les limitations spécifiques à chaque outil ainsi que
certains problèmes pratiques, notre étude fournit des recommandations utiles pour orienter
les chercheurs et les professionnels vers le choix du cadre d’analyse le plus adapté
pour une détection efficace des intrusions. | en_US |
| dc.language.iso | en | en_US |
| dc.subject | Network Analysis Frameworks | en_US |
| dc.subject | NFStream | en_US |
| dc.subject | NTLFlowLyzer | en_US |
| dc.subject | Flowmeter | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Machine-Learning-Based Network Intrusion Detection Systems | en_US |
| dc.subject | Feature Extraction | en_US |
| dc.subject | XGBoost | en_US |
| dc.subject | Random Forest | en_US |
| dc.subject | Decision Trees | en_US |
| dc.subject | CIC-IDS2018 | en_US |
| dc.subject | UNSW-NB15 | en_US |
| dc.subject | Network Security | en_US |
| dc.subject | Anomaly Detection | en_US |
| dc.subject | Cybersecurity | en_US |
| dc.subject | PCAP Analysis | en_US |
| dc.subject | DDoS Attacks | en_US |
| dc.title | Performance evaluation of Machine Learning-based Intrusion Detection using network data analysis frameworks. | en_US |
| dc.type | Thesis | en_US |
| Appears in Collections: | Ingénieur
|