Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/497
Title: Credit card fraud detection using machine learning
Authors: KINIOUAR, CHaima
BOUAMRA, YOusra
Keywords: Credit Card Frauds
Machine Learning
Classification Technique
Fraud Detection
Issue Date: 2023
Abstract: Abstract : The use of credit cards in financial transactions has brought about changes in global operations. Despite being a cash-based society, Algeria is increasingly embracing digital payment methods. However, the country faces obstacles such as the low level of financial literacy, cultural norms surrounding cash, and limited digital infrastructure in some areas. Although credit cards offer various advantages, they also pose a risk of fraudulent activities. To protect their clients, financial institutions, banks, and businesses have devised methods to detect unusual transactions. To this end, a credit card fraud detection model based on machine learning is being developed as part of this project to counter illegal activities.*** Résumé : L’utilisation des cartes de cr´edit dans les transactions financi`eres a engendr´e des changements dans les op´erations mondiales. Malgr´e le fait que l’Alg´erie soit une soci´et´e `a base de cash, elle adopte de plus en plus les m´ethodes de paiement num´eriques. Cependant, le pays est confront´e `a des obstacles tels que le faible niveau de litt´eratie financi`ere, les normes culturelles entourant l’argent liquide et l’infrastructure num´erique limit´ee dans certaines r´egions. Bien que les cartes de cr´edit offrent divers avantages, elles pr´esentent ´egalement un risque d’activit´es frauduleuses. Pour prot´eger leurs clients, les institutions financi`eres, les banques et les entreprises ont ´elabor´e des m´ethodes pour d´etecter les transactions inhabituelles. Dans ce cadre, un mod`ele de d´etection de fraude par carte de cr´edit bas´e sur l’apprentissage automatique est en cours de d´eveloppement dans le cadre de ce projet pour contrer les activit´es ill´egales.
Description: Encadrant : Saidi Iméne / Co-encadrant : Mahammed Nadir
URI: https://repository.esi-sba.dz/jspui/handle/123456789/497
Appears in Collections:Ingénieur

Files in This Item:
File Description SizeFormat 
Fraud_detection_Pfe-1-1.pdf61,14 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.