DC Field | Value | Language |
dc.contributor.author | HAMDI, ASma | - |
dc.date.accessioned | 2023-10-19T14:14:40Z | - |
dc.date.available | 2023-10-19T14:14:40Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/577 | - |
dc.description | Supervisor : MAHAMMED Nadir / Co-supervisor : SAIDI Imene | en_US |
dc.description.abstract | Abstract :
Resume screening is a critical component of the recruitment process, enabling the identification
of qualified candidates for a given role. Advancements in technology have introduced
AI-driven approaches to enhance resume screening through natural language processing
(NLP) and machine learning algorithms.
AI resume screening utilizes various techniques to analyze resumes and cover letters.
Keyword matching involves scanning documents for keywords that match job requirements,
quickly identifying candidates with the necessary skills and qualifications. Sentiment analysis,
using NLP, assesses motivation letters for emotional tone and context.
The desktop application developed for this engineering thesis implements these AIdriven
methods to streamline resume classification and ranking, along with sentiment
analysis of motivation letters using deep learning techniques. By leveraging AI and these
methods, organizations can optimize their resume screening processes, enhancing efficiency
and the overall effectiveness of recruitment procedures.***
Résumé :
La s´election de CV est un ´el´ement crucial du processus de recrutement, permettant
l’identification de candidats qualifi´es pour un poste donn´e. Les avanc´ees technologiques ont
introduit des approches bas´ees sur l’intelligence artificielle (IA) pour am´eliorer la s´election
de CV grˆace au traitement du langage naturel (NLP) et aux algorithmes d’apprentissage
automatique.
La s´election de CV bas´ee sur l’IA utilise diverses techniques pour analyser les CV et les
lettres de motivation. La correspondance de mots-cl´es consiste `a analyser les documents `a
la recherche de mots-cl´es correspondant aux exigences du poste, identifiant rapidement les
candidats ayant les comp´etences et les qualifications n´ecessaires. L’analyse des sentiments,
en utilisant le NLP, ´evalue les lettres de motivation pour leur tonalit´e ´emotionnelle et leur
contexte.
L’application de bureau d´evelopp´ee pour cette th`ese d’ing´enieur met en oeuvre ces
m´ethodes bas´ees sur l’IA pour rationaliser la classification et le classement des CV, ainsi
que l’analyse des sentiments des lettres de motivation `a l’aide de techniques d’apprentissage
profond. En exploitant l’IA et ces m´ethodes, les organisations peuvent optimiser leurs processus
de s´election de CV, am´eliorant ainsi l’efficacit´e et l’efficacit´e globale des proc´edures
de recrutement. | en_US |
dc.language.iso | en | en_US |
dc.subject | Resume Screening | en_US |
dc.subject | Recruitment with AI | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | NLP | en_US |
dc.subject | Keyword Matching | en_US |
dc.subject | Sentiment Analysis | en_US |
dc.title | Resume Classification and Ranking Using NLP and Machine Learning with Motivation Letter Sentiment Analysis Using Deep Learning | en_US |
dc.type | Thesis | en_US |
dc.type | Video | en_US |
Appears in Collections: | Ingénieur
|