Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAMDI, ASma-
dc.date.accessioned2023-10-19T14:14:40Z-
dc.date.available2023-10-19T14:14:40Z-
dc.date.issued2023-
dc.identifier.urihttps://repository.esi-sba.dz/jspui/handle/123456789/577-
dc.descriptionSupervisor : MAHAMMED Nadir / Co-supervisor : SAIDI Imeneen_US
dc.description.abstractAbstract : Resume screening is a critical component of the recruitment process, enabling the identification of qualified candidates for a given role. Advancements in technology have introduced AI-driven approaches to enhance resume screening through natural language processing (NLP) and machine learning algorithms. AI resume screening utilizes various techniques to analyze resumes and cover letters. Keyword matching involves scanning documents for keywords that match job requirements, quickly identifying candidates with the necessary skills and qualifications. Sentiment analysis, using NLP, assesses motivation letters for emotional tone and context. The desktop application developed for this engineering thesis implements these AIdriven methods to streamline resume classification and ranking, along with sentiment analysis of motivation letters using deep learning techniques. By leveraging AI and these methods, organizations can optimize their resume screening processes, enhancing efficiency and the overall effectiveness of recruitment procedures.*** Résumé : La s´election de CV est un ´el´ement crucial du processus de recrutement, permettant l’identification de candidats qualifi´es pour un poste donn´e. Les avanc´ees technologiques ont introduit des approches bas´ees sur l’intelligence artificielle (IA) pour am´eliorer la s´election de CV grˆace au traitement du langage naturel (NLP) et aux algorithmes d’apprentissage automatique. La s´election de CV bas´ee sur l’IA utilise diverses techniques pour analyser les CV et les lettres de motivation. La correspondance de mots-cl´es consiste `a analyser les documents `a la recherche de mots-cl´es correspondant aux exigences du poste, identifiant rapidement les candidats ayant les comp´etences et les qualifications n´ecessaires. L’analyse des sentiments, en utilisant le NLP, ´evalue les lettres de motivation pour leur tonalit´e ´emotionnelle et leur contexte. L’application de bureau d´evelopp´ee pour cette th`ese d’ing´enieur met en oeuvre ces m´ethodes bas´ees sur l’IA pour rationaliser la classification et le classement des CV, ainsi que l’analyse des sentiments des lettres de motivation `a l’aide de techniques d’apprentissage profond. En exploitant l’IA et ces m´ethodes, les organisations peuvent optimiser leurs processus de s´election de CV, am´eliorant ainsi l’efficacit´e et l’efficacit´e globale des proc´edures de recrutement.en_US
dc.language.isoenen_US
dc.subjectResume Screeningen_US
dc.subjectRecruitment with AIen_US
dc.subjectMachine Learningen_US
dc.subjectNLPen_US
dc.subjectKeyword Matchingen_US
dc.subjectSentiment Analysisen_US
dc.titleResume Classification and Ranking Using NLP and Machine Learning with Motivation Letter Sentiment Analysis Using Deep Learningen_US
dc.typeThesisen_US
dc.typeVideoen_US
Appears in Collections:Ingénieur

Files in This Item:
File Description SizeFormat 
Asma_Hamdi___Thesis___Engineer-1-1.pdf74,64 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.