https://repository.esi-sba.dz/jspui/handle/123456789/64
Title: | Decision Support Systems for Cardio Vascular Disease using Deep Learning Techniques |
Authors: | AKSA, DJemai OMARI, FEth ALlah WAlid |
Issue Date: | 2020 |
Abstract: | In thelate20thcentury,theurgentneedtoprocesstheexponentiallyrisingcollecteddata about cardiovasculardiseasesledtheresearcherstoexplorethepotentialresultsofdecision support systems(DSS).ProvidedthattheECGsignalplaystheimportantroleintheclinical diagnosis ofheartdiseases,variousmethodsundertookthistimeseriesdataanalysisasastep forwardtowardimplementingtheirinterpretationmodels. This thesispresentstheprincipalpartsofECGanalysesandtheinnovativestate-of-the- art classificationmethodsoftheaforementioneddata.Intheinterestofclassifyingthemost common typeofCVDs“arrhythmias”.Precededbygeneralconceptsandimportantinformation to preparethereadertocomprehendthefollowingmethodologiesandparadigmsused. In theliterature,MostmethodsstartedbyacquiringECGdatafromthepubliclyavailable datasets, mainlyMIT-BIHarrhythmiadatabase.Followingthisphase,apreprocessingofthe signal alongwithfeatureextraction,selection,and/ortransformation.Finally,theclassification and evaluationprocess,yieldingsuccessmeasuresoftheadoptedmethod. Manyresearcherstooktwomainapproachestoclassify:1)individualheartbeats,2)longer- term ECGsignals.Likewise,usingthesameordifferentpatientdatafortrainingandtestsets as validationmethod.Asaresult,theyusedmanymechanismsproducingexcellentresults, although somepronetoerrorand/orbiased. This topicofresearchstillneedsattentioninsomeareaswhereambiguityfallsupon.More- overtosomeclinicalimplicationforevaluatingtheDSS. |
Description: | Mr A. Rahmoun Encadreur Mr H. Bensenan Co-encadreur |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/64 |
Appears in Collections: | Master |
File | Description | Size | Format | |
---|---|---|---|---|
Master.pdf | 583,65 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.