Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/64
Title: Decision Support Systems for Cardio Vascular Disease using Deep Learning Techniques
Authors: AKSA, DJemai
OMARI, FEth ALlah WAlid
Issue Date: 2020
Abstract: In thelate20thcentury,theurgentneedtoprocesstheexponentiallyrisingcollecteddata about cardiovasculardiseasesledtheresearcherstoexplorethepotentialresultsofdecision support systems(DSS).ProvidedthattheECGsignalplaystheimportantroleintheclinical diagnosis ofheartdiseases,variousmethodsundertookthistimeseriesdataanalysisasastep forwardtowardimplementingtheirinterpretationmodels. This thesispresentstheprincipalpartsofECGanalysesandtheinnovativestate-of-the- art classificationmethodsoftheaforementioneddata.Intheinterestofclassifyingthemost common typeofCVDs“arrhythmias”.Precededbygeneralconceptsandimportantinformation to preparethereadertocomprehendthefollowingmethodologiesandparadigmsused. In theliterature,MostmethodsstartedbyacquiringECGdatafromthepubliclyavailable datasets, mainlyMIT-BIHarrhythmiadatabase.Followingthisphase,apreprocessingofthe signal alongwithfeatureextraction,selection,and/ortransformation.Finally,theclassification and evaluationprocess,yieldingsuccessmeasuresoftheadoptedmethod. Manyresearcherstooktwomainapproachestoclassify:1)individualheartbeats,2)longer- term ECGsignals.Likewise,usingthesameordifferentpatientdatafortrainingandtestsets as validationmethod.Asaresult,theyusedmanymechanismsproducingexcellentresults, although somepronetoerrorand/orbiased. This topicofresearchstillneedsattentioninsomeareaswhereambiguityfallsupon.More- overtosomeclinicalimplicationforevaluatingtheDSS.
Description: Mr A. Rahmoun Encadreur Mr H. Bensenan Co-encadreur
URI: https://repository.esi-sba.dz/jspui/handle/123456789/64
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
Master.pdf583,65 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.