https://repository.esi-sba.dz/jspui/handle/123456789/640
Title: | Internet of Vehicles DDoS Attacks Detection Based on Artificial Intelligence |
Authors: | ABABSA, MOhamed |
Keywords: | Intelligent Transport Systems Internet of Vehicles DDoS Attacks MisBehavior Detection System Deep Learning |
Issue Date: | 2024 |
Abstract: | The number of road traffic accidents has increased significantly and it is therefore urgent to improve road safety and control. Road safety is a priority for societies because it affects the quality of life of citizens. As a result, the progress and integration of intelligent transportation systems (ITS) has therefore been central to creating safer and more efficient transport networks. The Internet of Vehicles (IoV) has the potential to improve road safety and provide comforts to travellers. However, this technology is vulnerable to a variety of security vulnerabilities that malicious actors could exploit. One of the most serious threats to IoV is a Distributed Denial of Service (DDoS) attack that could disrupt traffic flow, stop communications between vehicles, or cause accidents. In order to protect communications, the implementation of the Misbehavior Detection System (MDS) is essential. Traditional MDSs systems rely on database attack patterns, but struggles with new attack patterns. For this reason, adaptive technology is needed. Deep Learning (DL) techniques offers solutions for detecting misbehaved activities in real-time within complex and dynamic network environments. These methods can analyze large network data to identify DDoS attacks and other malicious activity patterns. Thus, our research proposes a comprehensive study of IoV applications and their network security issues, particularly focusing on DDoS attacks and their dangerous impacts. It details state-of-the-art AI-based approaches for detecting misbehavior in IoV, addressing a critical aspect of cybersecurity in ITS. *** Le nombre d’accidents de la route a considérablement augmenté et il est donc urgent d’améliorer la sécurité et le contrôle routiers. La sécurité routière est une priorité pour les sociétés car elle affecte la qualité de vie des citoyens. En conséquence, les progrès et l’intégration des systèmes de transport intelligents (ITS) ont été essentiels pour créer des réseaux de transport plus sûrs et plus efficaces. L’Internet des Véhicules (IoV) a le potentiel d’améliorer la sécurité routière et d’offrir des commodités aux voyageurs. Cependant, cette technologie est vulnérable à diverses failles de sécurité que des acteurs malveillants pourraient exploiter. L’une des menaces les plus graves pour l’IoV est une attaque par déni de service distribué (DDoS) qui pourrait perturber le flux de trafic, interrompre les communications entre les véhicules ou provoquer des accidents. Afin de protéger les communications, la mise en oeuvre d’un Système de Détection de Comportements Malveillants (MDS) est essentielle. Les MDS traditionnels reposent sur des modèles d’attaques de base de données, mais ont du mal à détecter de nouveaux modèles d’attaques. Pour cette raison, une technologie adaptative est nécessaire. Les techniques d’apprentissage profond (DL) offrent des solutions pour détecter les activités malveillantes en temps réel dans des environnements de réseau complexes et dynamiques. Ces méthodes peuvent analyser de grandes quantités de données réseau pour identifier les attaques DDoS et d’autres modèles d’activités malveillantes. Ainsi, notre recherche propose une étude complète des applications IoV et de leurs problèmes de sécurité réseau, en se concentrant particulièrement sur les attaques DDoS et leurs impacts dangereux. Elle détaille les approches basées sur l’IA de pointe pour détecter les comportements malveillants dans l’IoV, abordant un aspect critique de la cybersécurité dans les ITS. |
Description: | Encadrant : Mr. Abdelhamid MALKI Co-encadrant : Mr. Soheyb RIBOUH |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/640 |
Appears in Collections: | Master |
File | Description | Size | Format | |
---|---|---|---|---|
Master_Report_Mohamed_ABABSA-1-1.pdf | 83,47 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.