DC Field | Value | Language |
dc.contributor.author | DAOUD, BRahim | - |
dc.date.accessioned | 2024-09-23T13:42:23Z | - |
dc.date.available | 2024-09-23T13:42:23Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/643 | - |
dc.description | Supervisor : Mr. KHALDI Belkacem / Mr. Zakaryia Ghalmane | en_US |
dc.description.abstract | In this engineering thesis, a practical system is presented for recommending
multimodal transport routes for students of the CESI campus
in France as part of the ”MonTrajet Vert” project, with a focus on user
comfort and environmental sustainability. The system is designed to optimize
travel routes by integrating various modes of transport such as buses,
trains, and bicycles within a synthesized multimodal transport graph.
The project is divided into two main stages: the first stage involves
creating a set of synthetic data and developing a transport graph that
accurately reflects the real network. The second stage focuses on applying
advanced machine learning algorithms to this graph, providing route
recommendations that consider factors such as real-time traffic conditions,
climate impact, and seasonal variations.
To enhance the reliability and applicability of the recommendations,
real-time traffic data has been integrated, and comprehensive testing has
been conducted using the Strasbourg transport network. The system has
been evaluated in various scenarios, demonstrating its robustness and effectiveness
in providing accurate and environmentally friendly travel routes.
This report describes the technical details of implementing the system,
including data integration, algorithm development, and performance evaluation.
The results underscore the importance of incorporating environmental
considerations into urban transport planning, highlighting the system’s
potential to contribute to more sustainable and user-friendly transport
solutions. ***
Dans cette th`ese d’ing´enierie , un syst`eme pratique pour recommander
des itin´eraires de transport multimodal pour les ´etudiants du campus CESI
en France est pr´esent´e comme partie du projet ”MonTrajet Vert”, avec un
accent sur le confort des utilisateurs et la durabilit´e environnementale. Le
syst`eme est con¸cu pour optimiser les itin´eraires de voyage en int´egrant
divers modes de transport tels que les bus, les trains et les v´elos au sein
d’un graphe de transport multimodal synth´etis´e.
Le projet est divis´e en deux principales ´etapes : la premi`ere consiste `a
cr´eer un ensemble de donn´ees synth´etiques et `a d´evelopper un graphe de
transport qui refl`ete fid`element le r´eseau r´eel. La deuxi`eme se concentre
sur l’application d’algorithmes avanc´es d’apprentissage automatique `a ce
graphe, fournissant des recommandations d’itin´eraires prenant en compte
des facteurs tels que les conditions de trafic en temps r´eel, l’impact climatique
et les variations saisonni`eres.
Pour am´eliorer la fiabilit´e et l’applicabilit´e des recommandations, des
donn´ees de trafic en temps r´eel ont ´et´e int´egr´ees et des tests approfondis ont
´et´e r´ealis´es en utilisant le r´eseau de transport de Strasbourg. Le syst`eme
a ´et´e ´evalu´e dans divers sc´enarios, d´emontrant sa robustesse et son efficacit
´e dans la fourniture d’itin´eraires de voyage pr´ecis et respectueux de
l’environnement.
Ce rapport d´ecrit les d´etails techniques de la mise en oeuvre du syst`eme,
y compris l’int´egration des donn´ees, le d´eveloppement algorithmique et
l’´evaluation des performances. Les r´esultats soulignent l’importance d’incorporer
des consid´erations environnementales dans la planification des transports
urbains, mettant en ´evidence le potentiel du syst`eme pour contribuer
`a des solutions de transport plus durables et conviviales. | en_US |
dc.language.iso | en | en_US |
dc.subject | Multimodal Route Recommendation | en_US |
dc.subject | Graph-Based Learning | en_US |
dc.subject | Climate-Aware Routing | en_US |
dc.subject | Real-Time Traffic Data | en_US |
dc.subject | User Preference Modeling | en_US |
dc.subject | High-Fidelity Transportation Graph | en_US |
dc.subject | Sustainable Transport | en_US |
dc.subject | Mobility Optimization | en_US |
dc.title | Graph Based Learnig For Multimodal Route Recommendation | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Ingenieur
|