https://repository.esi-sba.dz/jspui/handle/123456789/76| Title: | Decision Support Systems for Cardio Vascular Disease using Deep Learning Techniques |
| Authors: | AKSA, DJemai OMARI, FEth ALlah WAlid |
| Keywords: | LSTM Deep Learning Arrhythmia DSS Visualization Platform Iot time-series |
| Issue Date: | 2020 |
| Abstract: | On thisgraduationproject,weinvestigatetheuseofDSSforcardiovasculardiseasesdiag- nostic, focusingonmultipletypesofarrhythmia.wealsoexploretheuseofLSTMasaclas- sification modelusinglongertermECGsignal(10s),aswellasbuildingaplatformtodisplay and acquirenewsignalsusingIoTdevice(MySignals). The useofLSTMprovestobeperformingverywellonthetaskofclassifying17categories of rhythm(15arrhythmia+normalsinusrhythm+pacemakerrhythm)comparedtootherstate- of-the-art methods,yieldinganaccuracyof93%,sensitivity95%,andaspecificityof99.46%. As wellasareal-timeresponsiveplatformallowingthevisualizationofnewlyobtainedsignals and outputofthecomputer-aideddiagnostic. This projectdepictsthatthetopicofstudystillfacesmanyobstacles,challengesandlim- itations suchas(clinicalimplication,healthydata...etc)andothers.Despiteallthelater,the LSTM anddeeplearningmechanismsdemonstratedthatitiscapableofrecognizinglong-term patterns withinourtime-seriesdataalongwithgeneralizingthediagnosticprocess. |
| Description: | Mr A. Rahmoun Encadreur Mr H. Bensenan Co-encadreur |
| URI: | https://repository.esi-sba.dz/jspui/handle/123456789/76 |
| Appears in Collections: | Ingénieur |
| File | Description | Size | Format | |
|---|---|---|---|---|
| Engineering.pdf | 667,31 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.