Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/76
Title: Decision Support Systems for Cardio Vascular Disease using Deep Learning Techniques
Authors: AKSA, DJemai
OMARI, FEth ALlah WAlid
Keywords: LSTM
Deep Learning
Arrhythmia
DSS
Visualization Platform
Iot
time-series
Issue Date: 2020
Abstract: On thisgraduationproject,weinvestigatetheuseofDSSforcardiovasculardiseasesdiag- nostic, focusingonmultipletypesofarrhythmia.wealsoexploretheuseofLSTMasaclas- sification modelusinglongertermECGsignal(10s),aswellasbuildingaplatformtodisplay and acquirenewsignalsusingIoTdevice(MySignals). The useofLSTMprovestobeperformingverywellonthetaskofclassifying17categories of rhythm(15arrhythmia+normalsinusrhythm+pacemakerrhythm)comparedtootherstate- of-the-art methods,yieldinganaccuracyof93%,sensitivity95%,andaspecificityof99.46%. As wellasareal-timeresponsiveplatformallowingthevisualizationofnewlyobtainedsignals and outputofthecomputer-aideddiagnostic. This projectdepictsthatthetopicofstudystillfacesmanyobstacles,challengesandlim- itations suchas(clinicalimplication,healthydata...etc)andothers.Despiteallthelater,the LSTM anddeeplearningmechanismsdemonstratedthatitiscapableofrecognizinglong-term patterns withinourtime-seriesdataalongwithgeneralizingthediagnosticprocess.
Description: Mr A. Rahmoun Encadreur Mr H. Bensenan Co-encadreur
URI: https://repository.esi-sba.dz/jspui/handle/123456789/76
Appears in Collections:Ingénieur

Files in This Item:
File Description SizeFormat 
Engineering.pdf667,31 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.