https://repository.esi-sba.dz/jspui/handle/123456789/492
Title: | Brainwashing 2.0: Bias and double standard in western social media and news outlets. |
Authors: | ABDELLATIF, ABdelraouf KHEMKHAM, MOhamed |
Keywords: | Artificial Intelligence Machine Learning Deep Learning Artificial Neural Networks Natural Language Processing Support Vector Machines Mean Square Error Least Absolute Shrinkage And Selection Operator L1 norms L2 norms Continuous Bag Of Words Global Vectors For Word Representation Proportional Hazards Regression K-Nearest Neighbors Principal Component Analysis t-Distributed Stochastic Neighbor Embedding Long Short-Term Memory Gated Recurrent Units Radial Basis Function Networks Generative Adversarial Networks Self-Organizing Maps Term Frequency Inverse Document Frequency Term Frequency-Inverse Document Frequency Automatic Speech Recognition Conditional Random Fields Bidirectional Long Short-Term Memory Stanford Question Answering Dataset Question Answering Named Entity Recognition Document Understanding Conference |
Issue Date: | 2023 |
Abstract: | ABSTRACT : In this study, we leverage techniques from machine learning, deep learning, natural language processing and sentiment analysis to investigate the presence and impact of biases in the coverage of the Western news platforms and social media sources. Our focus centers around detecting and analyzing biases, differentiating between intentional and accidental misinformation, and interpreting how these biases may influence public perception, followed by sentiment analysis to study the variation of sentiments over time. This research report delves into the intersection of Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), sentiment analysis, and media bias detection. The study elucidates how these innovative technologies can be leveraged to scrutinize and interpret media content, ensuring unbiased information dissemination..*** RÉSUMÉ : Dans cette étude, nous exploitons des techniques issues de l’apprentissage automatique, de l’apprentissage profond, du traitement du langage naturel et de l’analyse des sentiments pour examiner la présence et l’impact des biais dans la couverture des plateformes d’information occidentales et des sources de médias sociaux. Notre attention se concentre sur la détection et l’analyse des biais, en différenciant les informations erronées intentionnelles et accidentelles, et en interprétant comment ces biais peuvent influencer la perception du public, suivis par une analyse des sentiments pour étudier la variation des sentiments dans le temps. Ce mémoire se plonge dans l’intersection de l’Apprentissage Automatique (AA), de l’Apprentissage Profond (AP), du Traitement du Langage Naturel (TLN), de l’analyse des sentiments et de la détection des biais médiatiques. L’étude éclaire comment ces technologies innovantes peuvent être exploitées pour scruter et interpréter le contenu médiatique, assurant une diffusion de l’information sans biais. |
Description: | Encadrant : Dr Sid Ahmed Benabderrahmane / Co-Encadrant : Pr Sidi Mohammed Benslimane |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/492 |
Appears in Collections: | Master |
File | Description | Size | Format | |
---|---|---|---|---|
Master (1)-1-1.pdf | 73,35 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.