https://repository.esi-sba.dz/jspui/handle/123456789/657
Title: | Exposure of Bank Run to Social Media: Predicting bank stock market losses from Twitter and YouTube conversation |
Authors: | FELLAH, ASma KOUALED, AMina SAmah |
Keywords: | Artificial Intelligence Stock Market Prediction Bank Stocks Social Media Sentiment Sentiment Analysis Bank Runs Market Sentiment Polarity of Tweets Machine Learning Formal Concept Analysis |
Issue Date: | 2024 |
Abstract: | This thesis investigates the relationship between social media sentiment and bank stock market performance, particularly during financial distress. By analyzing the sentiment of tweets and YouTube comments about bank stocks during critical periods, the study aims to determine how negative social media narratives influence stock market declines. Using advanced sentiment analysis and Formal Concept Analysis (FCA), the research uncovers hidden patterns and relationships within the data, providing a unique perspective on the impact of social media sentiment. The findings are expected to improve the accuracy and timeliness of forecasting models for bank stock performance. This study underscores the importance of monitoring social media as part of financial risk management, highlighting the potential of big data and machine learning techniques, especially FCA, to enhance market surveillance and financial system resilience. *** Cette th`ese examine la relation entre le sentiment des m´edias sociaux et la performance des actions bancaires, notamment en p´eriode de d´etresse financi`ere. En analysant le sentiment des tweets et des commentaires YouTube sur les actions bancaires pendant les p´eriodes critiques, l’´etude vise `a d´eterminer comment les r´ecits n´egatifs des m´edias sociaux influencent les baisses du march´e boursier. En utilisant des techniques avanc´ees d’analyse de sentiment et d’Analyse Formelle de Concepts (AFC), la recherche met en lumi`ere des sch´emas et des relations cach´es dans les donn´ees, offrant ainsi une perspective unique sur l’impact du sentiment des m´edias sociaux. Les r´esultats devraient am´eliorer l’exactitude et la rapidit´e des mod`eles de pr´evision de la performance des actions bancaires. Cette ´etude souligne l’importance de surveiller les m´edias sociaux dans le cadre de la gestion des risques financiers, mettant en avant le potentiel des techniques de big data et d’apprentissage automatique, en particulier l’AFC, pour am´eliorer la surveillance des march´es et la r´esilience du syst`eme financier. |
Description: | Supervisor : Dr. Sid Ahmed Benabderrahmane Co-Supervisor : Pr. Sidi Mohammed BENSLIMANE |
URI: | https://repository.esi-sba.dz/jspui/handle/123456789/657 |
Appears in Collections: | Ingénieur |
File | Description | Size | Format | |
---|---|---|---|---|
pfe-1-1.pdf | 68,56 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.