DC Field | Value | Language |
dc.contributor.author | KERMAD, HAsna ABir | - |
dc.contributor.author | TAIBI, HAlima ZIneb AYat | - |
dc.date.accessioned | 2024-09-25T13:29:28Z | - |
dc.date.available | 2024-09-25T13:29:28Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://repository.esi-sba.dz/jspui/handle/123456789/673 | - |
dc.description | Supervisor : Dr. Rabab BOUSMAHA Co-Supervisor :Pr. Sidi Mohammed BENSLIMANE | en_US |
dc.description.abstract | Parkinson’s disease (PD) is a progressive neurological disorder that affects millions worldwide, characterized
by motor and non-motor symptoms, including tremors, bradykinesia, rigidity, and speech
impairment. Early detection and monitoring of PD are crucial for effective management and intervention.
Traditional diagnostic methods rely heavily on clinical assessments, which can be subjective
and may not capture subtle changes in disease progression. In recent years, there has been growing
interest in leveraging multimodal data analysis techniques, particularly combining handwriting and
speech signals, to enhance PD detection and monitoring.
The significance of this project lies in its potential to revolutionize PD diagnosis and monitoring
by providing a non-invasive, cost-effective, and accessible method for early detection and longitudinal
assessment. By combining handwriting and speech analysis, this approach offers a holistic perspective
on motor and cognitive impairments associated with PD, facilitating timely interventions and
personalized treatment strategies.
Furthermore, the outcomes of this research have the potential to contribute significantly to the
development of non-invasive and cost-effective methods for early PD detection, thus facilitating timely
intervention and enhancing the quality of life for individuals affected by a neurodegenerative disorders
like Parkinson’s disease. ***
La maladie de Parkinson (MP) est un trouble neurologique progressif qui touche des millions de
personnes dans le monde, caract´eris´e par des symptˆomes moteurs et non moteurs, notamment des
tremblements, une bradykin´esie, une rigidit´e et des troubles de la parole. La d´etection pr´ecoce et la
surveillance de la MP sont cruciales pour une gestion et une intervention efficaces. Les m´ethodes de
diagnostic traditionnelles reposent fortement sur des ´evaluations cliniques, qui peuvent ˆetre subjectives
et peuvent ne pas saisir les changements subtils dans la progression de la maladie. Ces derni`eres ann´ees,
il y a eu un int´erˆet croissant pour l’utilisation de techniques d’analyse de donn´ees multimodales, en
particulier la combinaison de signaux d’´ecriture manuscrite et de parole, pour am´eliorer la d´etection
et la surveillance de la MP.
L’importance de ce projet r´eside dans son potentiel `a r´evolutionner le diagnostic et la surveillance
de la MP en fournissant une m´ethode non invasive, rentable et accessible pour la d´etection pr´ecoce
et l’´evaluation longitudinale. En combinant l’analyse de l’´ecriture manuscrite et de la parole, cette
approche offre une perspective holistique sur les d´eficiences motrices et cognitives associ´ees `a la MP,
facilitant les interventions opportunes et les strat´egies de traitement personnalis´ees.
De plus, les r´esultats de cette recherche ont le potentiel de contribuer de mani`ere significative au
d´eveloppement de m´ethodes non invasives et rentables pour la d´etection pr´ecoce de la MP, facilitant
ainsi une intervention rapide et am´eliorant la qualit´e de vie des personnes atteintes de troubles
neurod´eg´en´eratifs comme la maladie de Parkinson. | en_US |
dc.language.iso | en | en_US |
dc.subject | Parkinson’s Disease (PD) | en_US |
dc.subject | Feature Extraction | en_US |
dc.subject | Machine Learning (ML) | en_US |
dc.subject | Deep Learning (DL) | en_US |
dc.subject | Handwriting Analysis | en_US |
dc.subject | Speech Signals | en_US |
dc.subject | Multimodal Analysis | en_US |
dc.subject | Early Detection | en_US |
dc.title | Parkinson’s disease detection by multimodal analysis combining handwriting and speech signals | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Ingénieur
|