Skip navigation
Please use this identifier to cite or link to this item: https://repository.esi-sba.dz/jspui/handle/123456789/673
Title: Parkinson’s disease detection by multimodal analysis combining handwriting and speech signals
Authors: KERMAD, HAsna ABir
TAIBI, HAlima ZIneb AYat
Keywords: Parkinson’s Disease (PD)
Feature Extraction
Machine Learning (ML)
Deep Learning (DL)
Handwriting Analysis
Speech Signals
Multimodal Analysis
Early Detection
Issue Date: 2024
Abstract: Parkinson’s disease (PD) is a progressive neurological disorder that affects millions worldwide, characterized by motor and non-motor symptoms, including tremors, bradykinesia, rigidity, and speech impairment. Early detection and monitoring of PD are crucial for effective management and intervention. Traditional diagnostic methods rely heavily on clinical assessments, which can be subjective and may not capture subtle changes in disease progression. In recent years, there has been growing interest in leveraging multimodal data analysis techniques, particularly combining handwriting and speech signals, to enhance PD detection and monitoring. The significance of this project lies in its potential to revolutionize PD diagnosis and monitoring by providing a non-invasive, cost-effective, and accessible method for early detection and longitudinal assessment. By combining handwriting and speech analysis, this approach offers a holistic perspective on motor and cognitive impairments associated with PD, facilitating timely interventions and personalized treatment strategies. Furthermore, the outcomes of this research have the potential to contribute significantly to the development of non-invasive and cost-effective methods for early PD detection, thus facilitating timely intervention and enhancing the quality of life for individuals affected by a neurodegenerative disorders like Parkinson’s disease. *** La maladie de Parkinson (MP) est un trouble neurologique progressif qui touche des millions de personnes dans le monde, caract´eris´e par des symptˆomes moteurs et non moteurs, notamment des tremblements, une bradykin´esie, une rigidit´e et des troubles de la parole. La d´etection pr´ecoce et la surveillance de la MP sont cruciales pour une gestion et une intervention efficaces. Les m´ethodes de diagnostic traditionnelles reposent fortement sur des ´evaluations cliniques, qui peuvent ˆetre subjectives et peuvent ne pas saisir les changements subtils dans la progression de la maladie. Ces derni`eres ann´ees, il y a eu un int´erˆet croissant pour l’utilisation de techniques d’analyse de donn´ees multimodales, en particulier la combinaison de signaux d’´ecriture manuscrite et de parole, pour am´eliorer la d´etection et la surveillance de la MP. L’importance de ce projet r´eside dans son potentiel `a r´evolutionner le diagnostic et la surveillance de la MP en fournissant une m´ethode non invasive, rentable et accessible pour la d´etection pr´ecoce et l’´evaluation longitudinale. En combinant l’analyse de l’´ecriture manuscrite et de la parole, cette approche offre une perspective holistique sur les d´eficiences motrices et cognitives associ´ees `a la MP, facilitant les interventions opportunes et les strat´egies de traitement personnalis´ees. De plus, les r´esultats de cette recherche ont le potentiel de contribuer de mani`ere significative au d´eveloppement de m´ethodes non invasives et rentables pour la d´etection pr´ecoce de la MP, facilitant ainsi une intervention rapide et am´eliorant la qualit´e de vie des personnes atteintes de troubles neurod´eg´en´eratifs comme la maladie de Parkinson.
Description: Supervisor : Dr. Rabab BOUSMAHA Co-Supervisor :Pr. Sidi Mohammed BENSLIMANE
URI: https://repository.esi-sba.dz/jspui/handle/123456789/673
Appears in Collections:Ingénieur

Files in This Item:
File Description SizeFormat 
PFE_Taibi_Kermad-1-1.pdf69,99 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.